
Generalizing and Refactoring
jaxsnn

Internship report

Florian Fischer
Supervisors: Elias Arnold, Philipp Spilger and Eric Müller

Department of Physics and Astronomy
Ruprecht-Karls-University Heidelberg

October 2, 2024

Abstract

The main objective of this internship was to become familiar with the
Python library jaxsnn and make improvements to it. Jaxsnn is a state-of-
the art python framework for machine learning with spiking neural net-
works (SNNs). It stands out because its event-based simulation of SNNs
differs from most other libraries which follow a time-grid-based approach.
Moreover, it supports the execution of simulations and in-the-loop train-
ing on the neuromorphic BrainScales-2 system. The modifications made
to jaxsnn included generalizations in terms of network composability as
well as abstractions and simplifications of the code.

Contents

1 Introduction 1

2 Theory 2
2.1 Spiking Neural Networks . 2
2.2 JAX . 4
2.3 jaxsnn . 4

3 Methods 6

4 Summary and Outlook 8

1 Introduction

While machine learning based on artificial neural networks has gained significant
attention in recent years, machine learning with spiking neural networks (SNNs)
has also become an increasingly important research topic. One of the advantages
of SNNs is that they are more biologically realistic and thus might also help us
understand how the brain works. Moreover, SNNs are well-suited for execu-
tion on hardware, which promises energy-efficient execution by implementing
bio-inspired dynamics [11]. Additionally, advancements in training algorithms
of SNNs like the EventProp algorithm [12] and backpropagation through time
have made them an attractive option. This underlines that working on neuro-
morphic hardware as well as SNN-inspired machine learning are very important
fields of research. jaxsnn [7] sits at the intersection of these two. While it is
a software library for simulating and training of SNNs, it also allows users to
run experiments on neuromorphic hardware and perform in-the-loop training of
network parameters. The event-based simulation has also some advantages over
a time-grid-based one because the times of spikes can be continuous and don’t
have to be discretized into time bins as can be seen in figure 1.

First, the underlying theory that jaxsnn builds upon will be discussed. Then,
the improvements made to jaxsnn during this internship will be explained and
finally a short outlook on future work will be provided.

1

Figure 1: Continuous spike times vs discrete spike times. Taken from [7].

2 Theory

2.1 Spiking Neural Networks

Spiking Neural Networks (SNNs) are a special type of artificial neural networks
(ANNs). In contrast to traditional ANNs, they process information using spike
events in a way that aims to replicate the functioning of the brain. When it
comes to the simulation of SNNs, one of the most important choices to consider
is the choice of the neuron model. A common example is the Leaky Integrate-
and-Fire neuron which is a very simple yet powerful mathematical model to
describe neuronal dynamics. It goes back to Louis Lapicque who introduced a
mathematical description in 1907 [6].

The Leaky Integrate-and-Fire Neuron

The following explanations about LIFs are inspired by Chapter 1.3 of the book
Neuronal Dynamics by Wulfram Gerstner [3]. The basic idea of LIFs is that
starting from an initial membrane state the incoming current is integrated over
time, leading to a change in the neurons membrane potential. However, the
membrane potential naturally ”leaks” over time and converges towards a resting
potential in the absence of inputs. This temporal evolution of the membrane
potential can be represented by a parallel circuit consisting of a capacitor with
capacitance C and a resistor with resistance R. By using some basic equations
for the current I(t) and the voltage u(t) one can derive the following linear
differential equation for the circuit

τm
du

dt
= −[u(t)− urest] +RI(t). (1)

In the biological context I(t) corresponds to the synaptic current caused by pre-
synaptic neurons and u(t) to the membrane potential of the neuron. Moreover,

2

urest refers to the resting membrane potential and τm = RC to the membrane
time constant.

When the membrane potential reaches a certain threshold ϑ due to the
accumulated input, the neuron fires an action potential (spike) at the firing
time t(f). The sequence of firing times for one neuron i forms the spike train
Si(t) which is given by

Si(t) =
∑
f

δ(t− t
(f)
i), where t(f) : u(t(f)) = ϑ. (2)

After the neuron fires, the membrane potential is reset to a potential ur which
is typically below the resting potential

lim
δ→0;δ>0

u(t(f) + δ) = ur. (3)

In the human brain, neurons are connected to each other via synapses to allow
the propagation of action potentials. Similarly, a single LIF neuron can be
extended into a network of LIF neurons by linking the spikes of a presynaptic
neuron to the synaptic current of the postsynaptic neuron. The method of
linking spikes to synaptic currents depends on the model, but one common
approach is given by the following equation:

I(t) =
∑
i

wi[ϵ ∗ Si(t)], where ϵ(t) = θ(t) exp

(
− t

τs

)
. (4)

The synaptic weights wi represent the strength of the connection between in-
dividual neurons and the synaptic kernel ϵ determines the shape of the postsy-
naptic current caused by a single spike. Moreover, τs is called the synaptic time
constant.

Machine Learning with SNNs

In order to use SNNs for machine learning, the input has to be encoded into
spikes. The most popular encoding techniques are rate coding and temporal cod-
ing. While rate coding uses the spike frequency to encode information, temporal
encoding conveys information via the precise timing of individual spikes [2]. Af-
ter the simulation of the SNN the spike output also has to be decoded. One way
to do this is by using Leaky Integrators as output neurons. This adapted model
of the LIF neuron doesn’t fire spikes and just records the membrane potential
which can then be used to make predictions by taking the maximum voltages
for example. But spikes can also be used for instance by using the spike times
of the individual output neurons to make predictions.

However, optimizing the weights based on a loss function turns out to be
rather difficult. Standard backpropagation through time and temporal dis-
cretization of the SNN to compute the gradients of the loss function with respect
to the network’s parameters is not directly applicable. This is because the acti-
vation functions that produce discrete spikes are not differentiable. One solution

3

to this is using surrogate gradients [8] which replace the activation function for
the backward pass with a smooth and differentiable approximation like a sig-
moid function

σ(x) =
1

1 + e−x
(5)

Exact gradients

One way to compute exact gradients was presented by Göltz et al. in [4]. There
they derive an analytical solution for the time of the next threshold crossing
for the two specific cases τm = τs and τm = 2τs. Because the derived formulas
are differentiable they can be used to calculate exact gradients when the loss
depends on the first spike times of the output neurons.

Another more general method is the EventProp algorithm [12]. For that
method a set of adjoint equations has to be evolved backwards in time which
can then be used to calculate exact gradients.

2.2 JAX

JAX [1] is a Python library built on top of NumPy for high-performance numer-
ical computing, developed by Google. But it also provides composable function
transformations for efficient and parallelized computation.

JAX uses XLA (Accelerated Linear Algebra) to optimize the code. It gen-
erates machine code that can run on CPUs, GPUs or TPUs to speed up per-
formance. In order to achieve this, the code is traced during execution. Then
for subsequent calls, JAX checks the cache, and the function only has to be
recompiled if the input shapes or types have changed. This makes it necessary
to pay special attention to implementing the control flow in a way that is com-
patible with the tracing. For this reason, JAX provides built-int functions like
jax.lax.cond or jax.lax.scan which are substitutions for if statements and
for-loops respectively. While library calls get just-in-time (JIT) compiled by
default, for custom Python functions jax.jit can be used to compile them into
XLA-optimized kernels.

Furthermore, automatic vectorization of functions is supported via the jax.vmap
transformation. This allows defining functions on single elements and then to
perform automatic batching on them. Going one step further with jax.pmap,
functions can also be parallelized across multiple devices.

Additionally, JAX supports automatic differentiation allowing the differenti-
ation of multi variable vector-valued functions as well as higher order differenti-
ation. It is also possible to define operations with custom forward and backward
functions.

2.3 jaxsnn

jaxsnn [7] is a Python library for simulating SNNs and optimizing for bio-
inspired machine learning. Moreover, it is designed to work with event-driven
neuromorphic hardware and perform simulations on hardware as well as in the

4

loop training. It is split up into two parts: On one hand there is a discrete time
step based implementation which was inspired by Norse [10] and on the other
hand there is an event-based implementation. In the following the event-based
implementation will be explained.

The layers of a given network are simulated sequentially. For each layer a
simulation step is performed for a certain number of times which has to be set
when the network is defined. This number of steps per layer corresponds to
the number of events (input/internal spike or no spike) that are simulated for
a given layer.

At each step, the next event is found first. For this, the time of the next spike
in the layer is calculated analytically using the solutions from [4] or numerically
using a root solver. Then this time is compared to the time of the next input
spike and the next event is chosen. If both times are bigger than a predefined
time tlate no event will be simulated. Next, the discrete transition dynamics are
applied to the neuron states based on what type of event occurred. At the end
of the step the event is returned. The output of one layer then becomes the
input of the next layer. The data flow of the step function is also visualized in
figure 2.

Figure 2: Step function data flow. Taken from [7].

For training the weights a loss function, for example based on the output
spike times, has to be defined. If inside the step function the analytical so-
lution was used one can use automatic differentiation to calculate the gradi-
ents. However, for the general case backpropagation with EventProp can be
used. To achieve this, after the forward pass the adjoint dynamics are simu-
lated backwards in time. This is done using a backwards step function which
works similarly to the normal one.

jaxsnn features multiple examples for training on the Yin-Yang dataset [5].
Moreover there is also an example for training on the BBS-2 System [9]. In [7]
high accuracies on the Yin-Yang dataset with EventProp backpropagation are
reported with an accuracy of (98.2± 0.2)% in simulation and (94.8± 0.2)% on
BBS-2 with in-the-loop training.

5

3 Methods

Part of the internship was spent understanding the necessary theory from the
previous section and becoming familiar with the tools. Following that, the main
objective was to improve the code base of jaxsnn. While jaxsnn was mostly in
a functional state, some parts were a little unstructured. At first, some refac-
toring of the code was done to improve its maintainability and accessibility to
people unfamiliar with the library. Then also some generalizations and improve-
ments were made. While not every minor change will be mentioned, the more
significant changes are explained below.

Generalization of the serial function

The serial function lets the user compose layers of neurons to networks by cre-
ating one init/apply pair. Previously, there were separate serial functions for
discrete simulation, normal event-based simulation and event-based simulation
with known spike times (needed when the spike times from a hardware run
should be used). This functionality was unified to one single serial function for
all the aforementioned cases. In order to achieve this, some adjustments to the
code for the discrete simulation were made to sequentially simulate the layers
instead of simulating the whole network at each time step. Moreover, for the
apply function a carry value was introduced which allows the apply functions
to carry values between layers. This is useful for keeping track of the layer index
and in the case of the event-based simulation the starting index of neurons in
the layer (because absolute indexing is used). Additionally, an external value
was added which lets the user pass in the known spikes if necessary which can
then be handled by the apply functions of the layers.

Another goal was to make the serial function composable, allowing for
the definition of smaller models which then can be used to build more complex
models. To achieve this nesting, the signature of the apply function which is re-
turned by serial had to be matched with the signature of apply functions from
individual layers. This way apply functions of entire networks can be passed
into serial and handled the same way as layer apply functions. Moreover, after
some consideration, the lists of parameters (weights/recording) which are used
by the apply functions were forced to be flat to allow uniformity between equiv-
alent models that are build only from single layers and models which already
use smaller models as building blocks. Moreover, this simplifies the handling of
results after the training because nested lists of unknown depth don’t have to
be handled. The adjusted serial function can be seen in figure 3.

Filtering of wrong input spikes

In the previous implementation in the scan of the step function input spikes as
well as non-spiking events where added to the output. This led to the problem
that those input spikes could stay in the input queue for all following layers.

6

Figure 3: Adjusted serial function.

While this was technically already solved by checking in the transition func-
tion if the input spikes are really from the previous layer, this is still undesirable
because, with increasing numbers of layers, a lot of simulation steps just become
unnecessary events where nothing happens. To solve this issue, a new function
was implemented which filters out wrong spikes before the scan of the step

function (figure 4).

Unifying dataset functionality and separating encoding

Another objective was to unify the dataset functionality for the discrete and
event-based case. To achieve this, the previous, similar implementations of a
circle, constant, linear and Yin-Yang dataset from the event and discrete module
were combined together. For the event module the encoding used to be inside
the dataset functionality. Therefore, based on the encoding implementation
inside the dataset functionality, new encoding functions were implemented to
allow spatio-temporal encoding of inputs and also the temporal encoding of
targets. This encoding functionality was also abstracted to work for arbitrary
dimensions. For the discrete case, encoding was part of the network definition
with serial. This was changed to ensure that, for both event-based and discrete
simulations the dataset setup and encoding are handled separately from the
SNN.

Additionally, a data loader was implemented which uses JAX Pytree func-

7

Figure 4: Filtering of input spikes.

tionalities to permute the samples randomly and split them into batches of
desired size. It works for samples which are stored in arrays as well as more
complex pytree structures like EventPropSpikes.

4 Summary and Outlook

Overall this internship was very helpful to gain an understanding of the theory
and the libraries like JAX and jaxsnn. Many of the changes were chore tasks
to improve jaxsnn’s maintainability in the future. But also some important
improvements were made like generalizing the serial function and adapting it
to support composability. And also the filtering of wrong input spikes is critical
when thinking about scaling up the network sizes. All the changes were also
verified using the existing examples and tests. In the following bachelor thesis
jaxsnn will be extended to allow the use of a wider range of network topologies
and also delays will be incorporated. This is important to make jaxsnn a more
flexible library for simulating SNNs and ML-inspired training of SNNs.

8

References

[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake Van-
derPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable trans-
formations of Python+NumPy programs, 2018.

[2] Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D.
Lu. Training spiking neural networks using lessons from deep learning.
Proceedings of the IEEE, 111(9):1531–1556, September 2023.

[3] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Panin-
ski. Neuronal Dynamics: From Single Neurons to Networks and Models of
Cognition. Cambridge University Press, Cambridge, UK, 2014.

[4] J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser,
B. Cramer, D. Dold, A. F. Kungl, W. Senn, J. Schemmel, K. Meier, and
M. A. Petrovici. Fast and energy-efficient neuromorphic deep learning with
first-spike times. Nature Machine Intelligence, 3(9):823–835, September
2021.

[5] Laura Kriener, Julian Göltz, and Mihai A. Petrovici. The yin-yang dataset.
In Neuro-Inspired Computational Elements Conference, NICE 2022, page
107–111. ACM, March 2022.

[6] Louis Lapicque. Recherches quantitatives sur l’excitation électrique des
nerfs traitée comme une polarisation. Journal de Physiologie et de Patholo-
gie Générale, 9:620–635, 1907.

[7] Eric Müller, Moritz Althaus, Elias Arnold, Philipp Spilger, Christian Pehle,
and Johannes Schemmel. jaxsnn: Event-driven gradient estimation for
analog neuromorphic hardware. In 2024 Neuro Inspired Computational
Elements Conference (NICE), volume 2022, page 1–6. IEEE, April 2024.

[8] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gra-
dient learning in spiking neural networks: Bringing the power of gradient-
based optimization to spiking neural networks. IEEE Signal Processing
Magazine, 36(6):51–63, November 2019.

[9] Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser,
Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried,
Eric Müller, and Johannes Schemmel. The brainscales-2 accelerated neu-
romorphic system with hybrid plasticity. Frontiers in Neuroscience, 16,
February 2022.

[10] Christian Pehle and Jens Egholm Pedersen. Norse - A deep learn-
ing library for spiking neural networks, January 2021. Documentation:
https://norse.ai/docs/.

9

[11] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Tim-
othée Masquelier, and Anthony Maida. Deep learning in spiking neural
networks. Neural Networks, 111:47–63, March 2019.

[12] Timo C. Wunderlich and Christian Pehle. Event-based backpropagation
can compute exact gradients for spiking neural networks. Scientific Reports,
11(1), June 2021.

10

	Introduction
	Theory
	Spiking Neural Networks
	JAX
	jaxsnn

	Methods
	Summary and Outlook

