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We study excitation transport in a two-dimensional system of randomly assembled spins with
power-law hopping in two dimensions. This model can be realized in cold atom quantum simulators
with Rydberg atoms. In these experiments, due to the Rydberg blockade effect, the degree of
disorder in the system is effectively tunable by varying the spin density. We study dynamics and
eigenstate properties of the model as a function of disorder strength and system size and discuss
potential limitations for experiments. At strong disorder we observe the absence of transport due
to localized eigenstates with power-law tails. In this regime the spectral and eigenstate properties
can be understood in a perturbative picture of states predominantly localized on small clusters
of spins. As the disorder strength is weakened eigenstates become increasingly delocalized and
appear multifractal for moderate system sizes. A detailed study of the system-size scaling of the
eigenstate properties indicates that in the infinite size limit all state eventually become localized.
We discuss the feasibility of observing localization effects experimentally in the spatial spreading
of an initially localized excitation and identify limited system sizes and finite decoherence rates as
major challenges. Our study paves the way towards an experimental observation of localization
effects in Rydberg spin systems with tunable disorder.

I. INTRODUCTION

Anderson localization, the absence of transport of a
particle through a disordered medium, is due to inter-
ference between different paths that a particle can take,
and thus occurs in isolated quantum systems [1, 2]. It
has been studied theoretically and observed experimen-
tally in one [3, 4] and three [5] spatial dimensions using
cold atoms and recently also in two-dimensional systems
[6, 7], which present a challenge due to the notoriously
large localization length. In the original tight binding
Anderson model the particle can hop to its neighboring
sites in a lattice geometry and each lattice site has a ran-
dom potential energy. On the contrary, the case of purely
off-diagonal disorder, i.e. random hopping strength and
no disorder potential, in combination with power-law in-
teractions is less well studied theoretically [8, 9], but
is also of great interest as it is relevant for transport
processes in biological systems such as light harvesting
complexes [10–12]. Moreover, many quantum simulation
platforms naturally feature power-law interactions, which
combined with randomness in the particle positions, al-
low the realization of random hopping models. Examples
for such experimental implementations include magnetic
atoms [13, 14], polar molecules [15], trapped ions [16–18],
nitrogen vacancy centers in diamonds [19], nuclear spins
in solid-state systems [20], atoms trapped in a photonic
crystal waveguide [21], and Rydberg atoms [22], the last
being the main targeted system in this work.

Here we study a power-law Euclidean model with
purely off-diagonal disorder in two dimensions (2D), i.e.
a particle hopping between randomly placed sites with a
hopping strength Vij ∝ r−aij , where rij is the interparti-
cle separation. We focus on the experimental realization

in Rydberg gases with the associated dipole-dipole in-
teraction Vij ∝ r−3ij . We impose a lower bound on the
distance between pairs of atoms, occurring naturally in
experiments with Rydberg atoms [23, 24], which leads to
a particular type of tunable disorder. In this situation all
eigenstates are expected to be localized at any disorder
strength [8], however, the extent of eigenstates becomes
extremely large at weak disorder. By extensive numeri-
cal simulations using exact diagonalization we study the
dependence of dynamical excitation spreading as well as
spectral and eigenstate properties of this model as a func-
tion of disorder strength and system size. Our main the-
oretical contribution is to confirm that for this particular
type of disorder and geometry all states are localized in
the thermodynamic limit for any disorder strength and
to provide a microscopic understanding of the eigenstate
properties at strong disorder. With regard to an experi-
mental realization of power-law hopping models with Ry-
dberg atom quantum simulators we identify a regime in
which localization effects will be observable and highlight
potential challenges, thus providing guidance to experi-
mentalists.

The problem of localization in systems with power-law
hopping (∝ r−a) has been studied theoretically by Lev-
itov [8] and others [25–27] finding full localization for
a > d, where a is the power-law exponent of the hopping
and d the system dimension. In this case the eigenstates
show power-law tails which means that they are not An-
derson localized in the strict sense, which is signaled by
exponential localization of the eigenstates. It was found
that on-site disorder, as in the case of the Anderson
model [9], leads to full localization in 2D [28–30], and to
a transition between localized and extended states with
a mobility edge in 3D [31, 32]. These studies considered
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lattice models where disorder is introduced imposing un-
correlated random fluctuations on the hopping strengths.
A more experimentally realistic scenario is the random
placement of atoms with power-law hopping strength be-
tween them (power-law Euclidean model). This model
has been studied more recently, motivated by experimen-
tal advances in quantum simulation with cold molecules
and Rydberg atoms [33–40]. These works focus on parti-
cles in lattice geometries with dilute filling where the dis-
order strength can be tuned through the filling fraction
of the lattice. Rydberg spins randomly placed in continu-
ous space but subject to the Rydberg blockade condition
feature a different type of tunable disorder which is less
well studied. We are only aware of a study of the spec-
tral statistics [41] and a recent work studying the effect
of strongly coupled clusters and of degenerate excited
levels in this scenario [42–44]. Our work provides a sys-
tematic study of the dynamical and eigenstate properties
of this model and addresses effects of experimental im-
perfections under realistic conditions. We confirm that
many the result of [34] also hold for this kind of disor-
der. First steps towards a realization of this model with
Rydberg spins have been reported recently [45, 46].

The remainder of our work is structured as follows. In
Sec. II we introduce the model and the considered ge-
ometry and type of disorder. We study the spectral and
eigenstate properties of this model in Sec. III. We start
with a discussion of the dependence on energy and disor-
der strength and interpret the features observed at strong
disorder in terms of small isolated clusters (Sec. III A).
In Sec. III B we investigate the localized eigenstates’ spa-
tial shape, followed by a study of system size scaling
in Sec. III C. Section IV is dedicated to the dynamical
spreading of an initially localized excitation (Sec. IV A)
and the question of feasibility of experimentally observ-
ing localization effects in Rydberg systems (Sec. IV B).
In Sec. V we discuss our results and formulate goals for
future research. In the appendix we back up the results
of Sec. III by providing results on level statistics (App. A)
and by analyzing the properties of low-energy states in
detail (App. B).

II. MODEL

The choice of the model studied in this work is moti-
vated by recent Rydberg atom experiments [24, 45–47].
The specific setup we consider is a thermal cloud of laser
cooled atoms which, in a first step, are laser-excited to a
Rydberg state. The created Rydberg atoms are coupled
to a second nearby Rydberg state via microwave radia-
tion. The resulting Rydberg spins feature strong dipolar
exchange interactions. We will be concerned with the
transport of spin excitations within the Rydberg man-
ifold. Atoms that have not been excited to Rydberg
states in the initial excitation step are not included in
the description. Also, we neglect the thermal motion of
the atoms and regard the atomic positions to be fixed,

rb

2R

Atom 1 Atom 2

|↑〉 |↑〉

|↓〉 |↓〉

Vij

(a) (b)

FIG. 1. (a) Schematic representation of an 2D cloud of Ry-
dberg atoms respecting the Rydberg blockade constraint and
arranged within a spherical volume of radius R. (b) Energy
levels of the Rydberg spin system and schematic illustration
of dipolar exchange interactions between two Rydberg spins.

which is a reasonable assumption for typical cloud tem-
peratures and time scales [24]. We restrict to the case of
a single spin excitation in a two-dimensional geometry.
Under these assumptions the system is described by a
single particle hopping model with disorder in the hop-
ping rates. In the following we outline the details of this
model and its numerical implementation.

A. System geometry

To model the process of creating Rydberg atoms we
randomly place N spins uniformly in a two-dimensional
disk-shaped volume of radius R [48]. The excitation of
atoms to Rydberg states is subject to the Rydberg block-
ade constraint [23]. Due to the van-der-Waals interac-
tions between the Rydberg atoms any pair of spins must
have a distance larger than the blockade radius rb, which
depends on the chosen Rydberg state and the details of
the excitation process [24]. To model this we draw ran-
dom spin positions sequentially and reject a sample if
its distance to any of the previously drawn positions is
less than rb. This procedure is equivalent to randomly
placing N disks of diameter rb in a given volume, and
is known as random sequential absorption [49, 50]. A
typical positional configuration generated in this way is
shown in Fig. 1(a).

Due to the blockade constraint atom positions are not
completely random, resulting in the degree of disorder
being tunable. While at low number density, i.e. when
the ratio of blockade radius over mean inter-particle spac-
ing is small, atom positions are uncorrelated (strong dis-
order), at higher density spin positions become more
densely packed and regular structures appear (weak dis-
order). The densest packing of disks in 2D is realized
for a regular hexagonal lattice configuration. However,
the random sequential absorption process reaches the so-
called jamming limit at which no further atom can be
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placed. Defining the filling fraction (dimensionless den-
sity) ρ = N(rb/2)2/R2 as the ratio between the area
covered by the disks and total area, the jamming limit
is given by ρmax = 0.5472 ± 0.0002 [49]. The number of
random trials necessary for generating samples of den-
sity ρ increases as (ρmax − ρ)−2 [50] as one approaches
the jamming limit. In the interest of keeping computing
time reasonable we investigate densities up to ρ = 0.53.
Experimentally, the density can be tuned by varying the
strength and duration of the laser pulses that are used to
excite the atoms to Rydberg states, as well as the density
of ground state atoms which puts an upper bound on the
reachable Rydberg atom density.

B. Hamiltonian

The excitation transport takes place in the pseudo-
spin-1/2 system where the spins are encoded in two Ry-
dberg states

|↓〉 =
∣∣∣nS 1

2
,mj = +1/2

〉
, |↑〉 =

∣∣∣nP 3
2
,mj = +3/2

〉
.

(1)

In the initial excitation step, described in the previous
subsection, Rydberg atoms are created in the state |↓〉.
Subsequently, spin excitations can be created by mi-
crowave coupling between the two spin states [24, 46, 47].
The dynamics ensuing from dipolar exchange interactions
between the spin states [see Fig. 1(b)] is described by the
XY spin Hamiltonian

H = −1

2

N∑
i 6=j

Vij(S
+
i S
−
j + S−i S

+
j ) , (2)

where S±i = Sxi ± iS
y
i are the spin raising and lowering

operators corresponding to atom i with Sαi (α = {x, y})
being the spin-1/2 angular momentum operators. Vij is
the matrix element of the dipole-dipole interaction

Vij = ~C3 ·
(1− 3 cos2 θij)

|ri − rj |3
, (3)

where θij denotes the angle between the quantization
axis and the difference vector (ri − rj) between the
atom positions. In our two-dimensional geometry we
choose the quantization axis to be perpendicular to the
plane (θ = π

2 ) leading to isotropic power-law interactions

Vij = ~C3/|ri − rj |3.
The dynamics under the spin Hamiltonian (2) con-

serves the number of excitation, i.e. the number of spins
in the state |↑〉. We restrict to the case of a single exci-
tation, in which the problem takes the form of a hopping
model:

H = −
N∑
i 6=j

Vij |i〉 〈j| , (4)

where |i〉 describes the state in which atom i is in state
|↑〉, while all other atoms are in state |↓〉. The spin excita-
tion takes the role of a particle hopping between the sites
of a random graph given by the interaction strengths Vij .
We note that in this model the Hamiltonian is composed
of off-diagonal terms only, in contrast to the standard An-
derson hopping model where nearest neighbor hopping is
combined with disorder generated by randomizing the
on-site potentials.

Unless specified otherwise, we will use dimensionless
units by setting rb, C3, and ~ to unity, which sets
C3/(~r3b ) to be the unit of energy and r3b/C3 to be the
unit of time. Typical experimental values are C3/2π =
0.86 GHz µm3 and rb = 5 µm (using n = 48) [47], which
is, however, largely tunable by choosing Rydberg states
with different principal quantum number. After rescal-
ing to these units, the dimensionless density ρ and the
number of atoms, or sites, N remain as free model pa-
rameters. In the following sections we investigate the
impact of off-diagonal disorder in the hopping terms Vij
generated by the random atom positions on excitation
transport for varying density, i.e. disorder strength, ρ
and system size. For this we numerically solve the hop-
ping model (4) by exact diagonalization of the matrix Vij
for system sizes up to N = 32000 atoms.

III. SPECTRAL AND EIGENSTATE
PROPERTIES

In this section we study the properties of the eigen-
states of the hopping Hamiltonian Eq. (4) focusing on
localization effects. For the Anderson model in d dimen-
sions with power-law hopping V ∝ r−a it is known that
for a > d all states are localized for any disorder strength
[8]. Also, for the case we study, the power-law Euclid-
ian model with (d = 2, a = 3), numerical experiments
showed that all states are localized [34]. However, in
Ref. [34] a specific kind of disorder was used and it was
found that localization lengths can be extremely large
in 2D leading to an effective localzation-delocalization
crossover at realistic system sizes. To address the ques-
tion, whether the same occurs for the type of disorder
present in Rydberg systems, we study spectral and eigen-
state properties systematically, as a function of density ρ
(i.e. disorder strength), energy, and system size. We find
that at low densities all states are localized with extents
much smaller than the system size and generally decay
spatially with a power law, with deviations due to effects
of rare resonances. In this regime all spectral features
can be understood in terms of small clusters of strongly
interacting spins using a perturbative approach. At high
densities the eigenstates with highest energy are still lo-
calized within small regions, while in the bulk we observe
a broad region of seemingly extended states. However,
a careful analysis of the system-size dependence of the
eigenstate participation ratio indicates that the finite-
size generalized fractal dimension decays in the large N
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FIG. 2. Overview of the density dependence of spectral and eigenstates properties. (a) DOS for all densities. (a.i), (a.ii), (a.iii)
Cuts at densities ρ = 0.01, 0.2, 0.5. (b) Energy-binned IPR for all densities. (b.i), (b.ii), (b.iii) Eigenstate IPRs at densities
ρ = 0.01, 0.2, 0.5. We used N = 2000 atoms, adjusted the system size R to match each density ρ and averaged over 50000
disorder realizations. The energy was divided into 200 bins which amounts to ∆E ≈ 0.039 for (a) and (b) and 1000 bins with
∆E ≈ 0.0034 for (a.i-a.iii). For (b.i-b.iii) we included 12000 different disorder realizations.

limit throughout the spectrum, which suggests that all
states will eventually become localized in the infinite size
limit.

A. Density of states and inverse participation ratio

The main property of interest for studying localization
is the inverse participation ratio (IPR) of eigenstates. Be-
fore presenting our numerical results we briefly introduce
this quantity. The IPR of a state |ψ〉 =

∑
j cj |j〉 is de-

fined as IPR =
∑N
j=1 |cj |4. Its inverse, the participation

ratio (PR), quantifies how many basis states participate
in the state, or in the language of particle transport,
over how many sites the particle is distributed. For a
state perfectly localized on site k, i.e. cj = δjk, one has
PR = 1, while for a state completely delocalized over all
N sites, cj = 1/

√
N , we obtain PR = N . Accordingly,

the IPR can take values 1/N ≤ IPR ≤ 1 and is large for
localized states and small for extended ones. In the fol-
lowing we use the IPR to investigate whether eigenstates

|φn〉 =
∑
j c

(n)
j |j〉 at eigenenergies En are of localized or

extended nature and how their properties depend on the
atom density ρ, i.e. on the disorder strength. We note
that usually, the terms localized and extended, refer to
the system-size scaling of eigenstate IPRs. These prop-
erties will be discussed in Sec. III C, while in the present
subsection we will refer to localized (extended) states as
states with IPR ∼ 1 (IPR ∼ 1/N), respectively.

We begin our numerical study by examining the den-
sity of states, DOS(E) = |KE | with KE = {n

∣∣ E −
∆E/2 ≤ En < E + ∆E/2}, as a function of energy and
atom density. In Fig. 2(a) we used N = 2000 atoms, seg-

4

3

2

1

0

1

2

En
er

gy
 E 0.5

0.5

0.365

0.5

0.387 0.5

0.333

0.25

0.25
0.339

(a) (b)

Dimer Line

Triangle Square Dimer Line Triangle Square

FIG. 3. Examples of small regular clusters. (a) Different
types of regular arrangements, where the smallest distances
is given by rb. The corresponding eigenenergies are displayed
in panel (b). The numbers above the lines denote the IPR for
the respective state. Dashed lines indicate doubly degenerate
levels. The ground state has equal occupations and sign on
all sites except for the case of the line, where the central site
has a higher occupation, thus not reaching the minimal IPR
of 1/N .

mented the energy into 200 bins (corresponding to a bin
size ∆E ≈ 0.039), adjusted the system size R to match
each density ρ, and averaged over 50000 disorder real-
izations, i.e. random atom placements. Panels (a.i-iii)
show cuts at three different densities as indicated by the
dashed lines in Fig. 2(a). The DOS is symmetric at low
atom density, i.e. strong disorder, and sharply peaks at
E = 0. It broadens and becomes asymmetric at higher
densities, with a long tail at negative energies.

These features can be understood microscopically in
terms of small clusters of regularly spaced atoms. At low
density the probability to encounter clusters of multiple
atoms forming a regular structure is low. Thus the spec-
trum is dominated by dimers, i.e. pairs of closely spaced
atoms i and j, with the atoms surrounding the dimer
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much further away from it than the spacing of the pair.
In this case we can treat the interactions of the dimer
with the remainder of the system as a perturbation to
the dimer Hamiltonian Hij = −Vij(|i〉 〈j| + |j〉 〈i|). Ne-
glecting the interaction of the dimer with its surrounding
completely results in the eigenstates |φ±〉 = (|i〉±|j〉)/

√
2

being perfectly localized on the dimer and eigenenergies
E± = ∓Vij symmetrically distributed around E = 0.
This explains the symmetric shape of the DOS at low
densities. We note that the dimer picture has also been
employed in previous works to explain spectral proper-
ties of power-law hopping models [41–43]. In Fig. 2(a) we
also observe that the DOS becomes narrower and more
strongly peaked at E = 0 the lower the density, which is
explicitly shown in Fig. 2(a.i) for ρ = 0.01. This is due
to the fact that the average pair distance is simply larger
for lower densities and thus the average interaction en-
ergy becomes smaller. In fact, for very low densities the
blockade effect becomes negligible resulting in uncorre-
lated atom positions. In this limit, the problem becomes
scale invariant as the Hamiltonians for different densities
are equal up to a global rescaling of energy. Thus, further
reducing the density results in a narrowing of the DOS
while leaving its shape unchanged.

The highest dimer energy is realized if the pair dis-
tance equals the lower distance cutoff given by the Ry-
dberg blockade rb, which gives Vrb = C3/r

3
b = 1 in our

units. This constraint explains the drop of the DOS for
|E| > 1 visible in panels (a) and (a.ii) of Fig. 2. En-
ergies outside of this window can only be attained by
larger clusters of atoms separated by distances close to
the blockade radius. In Fig. 3 we show the eigenenergies
of a selection of such clusters. This shows that for grow-
ing cluster size the eigenenergies extend much further to-
wards negative energies than towards positive ones. The
observed asymmetry is an intrinsic property of the purely
negative and off-diagonal hopping Hamiltonian (4). At
higher densities the eigenstates become increasingly de-
localized over larger clusters of atoms explaining the ob-
served overall asymmetry in the DOS. Also, the peak of
the DOS around E = Vrb = 1 observed at high densi-
ties, see Fig. 2(a.iii), has a precursor in the spectra of
small clusters as their eigenstates show degeneracies at
this energy visible in Fig. 3.

We now turn to the eigenstate IPR shown in Fig. 2(b).
At low densities, corresponding to uncorrelated atom
positions and thus strong disorder, all states are local-
ized. For higher density, i.e. increasingly dense packing
of atoms, the IPR decreases indicating that eigenstates
become more extended. At low densities, the energy-
binned IPR in panel (b) shows a sharp feature at |E| = 1,
the blockade energy, which can be understood in terms
of the cluster picture developed above. In panels (b.i-iii)
we show the IPRs of all eigenstates without binning for
specific densities, which reveals an even richer structure,
which can be fully understood in terms of our microscopic
picture.

In Fig. 2(b.i) we observe a sharp horizontal feature for

|E| < 1 where states accumulate at IPR . 1/2. This cor-
responds to the IPR of dimers. The better they are iso-
lated from their surrounding the closer the IPR of states
localized on them is of the maximal value of 1/2. Dimer
energies are confined to |E| ≤ 1 due to the blockade con-
straint, which explains that states at even higher energies
must be due to larger clusters and have smaller IPR. In-
deed, we observe accumulations of points at IPR ≈ 1/3
and 1/4 due to trimers and tetramers, which extend fur-
ther towards negative energies. At E > 0 we observe a
feature at IPR ≈ 0.387, which is the IPR corresponding
to the highest energy state of a trimer, realized by the
line configuration as shown in Fig. 3. Around E = 0 we
observe a substantial number of more strongly delocal-
ized states with IPR� 1/2. Their distribution in energy
again shows an asymmetry with a tail towards negative
energies as expected from the analysis of the cluster spec-
tra in Fig. 3.

Interestingly, around E = 0 we observe a group of
states that is even more localized than the dimer eigen-
states, i.e. IPR > 1/2. These states result from atoms
being separated further from their surrounding atoms
than the typical distance among those. In Fig. 2(b.i)
we observe that these states appear exclusively at posi-
tive energies, which can be understood in a perturbative
picture: We consider an isolated atom k being weakly
coupled to a small cluster, exemplified here by a dimer
of atoms i and j. Written in the eigenbasis of the dimer
Hamiltonian, using that Vik ≈ Vjk ≡ V , the Hamiltonian
of this system reads

H = −Vij(|φ+〉 〈φ+| − |φ−〉 〈φ−|)
− (V

√
2 |φ+〉 〈k|+ h.c.) .

(5)

This shows that the state |k〉 only couples to the, energet-
ically lower, symmetric state of the dimer. Thus the level
repulsion due to the coupling between |φ+〉 and |k〉 will
lead to an upward shift of the state localized on the single
site k. If Vik and Vjk are only approximately equal, the
coupling of |k〉 to |φ+〉 will still be much stronger than to
|φ−〉 shifting |k〉 to positive energies. This argument can
also be extended to the perturbative coupling of a single
site to larger clusters.

At intermediate densities, shown in Fig. 2(b.ii) most
of the features caused by small clusters are still visible,
but we now observe an increasing fraction of states with
very small IPR at E < 0. These delocalized states be-
come even more prominent at the highest densities, while
states at E > 0 still stay rather localized, see Fig. 2(b.iii).
One might suspect that a crossover from a localized to a
partly delocalized phase with a mobility edge at E = 0
occurs as density is increased. However, as we show in
Sec. III C a detailed analysis of the system-size depen-
dence of the IPR suggests that all states will become
localized eventually, even for the highest densities.
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B. Spatial shape of eigenstates

Before proceeding to the analysis of the system-size
dependence of the IPR, we briefly discuss the spatial
shape of the localized eigenstates. We define the radial
density n(r) of a state as the average excitation prob-
ability of an atom at distance r from the position rm
of the state’s highest occupied site, i.e. |c(n)m |2 is largest

among the populations |c(n)j |2. Defining the set of in-

dices Kr = {j
∣∣ |rj − rm| ∈ [r, r + δr)} of atoms inside

an annulus around rm, we write the radial density of an
eigenstate |φn〉 as

n(r, φn) =
1

|Kr|
∑
j∈Kr

|c(n)j |
2 (6)

where |Kr| is the number of elements in the set.
We find that strongly localized eigenstates (PR� N)

typically have power-law tails. This characteristic fea-
ture of power-law Euclidian models is in contrast to An-
derson localization, where states are exponentially local-
ized allowing to define a localization length. In Fig. 4
we show the radial density for the highest energy state
at low and high density as an example. In the double
logarithmic plot, panel (b), the r−6 power-law tails are
clearly visible. Interestingly, for the state at high den-
sity we find an initial exponential decay, as seen in the
single-logarithmic plot, panel (a). Such an exponential
onset was observed for all the localized states at E > 0
for high densities, however, it becomes less pronounced
as E = 0 is approached from above. The localization
length ξ varies between eigenstates and correlates with
the eigenstates’ PR. At low densities only some of the
least localized states around E = 0 show this behavior.
Understanding the dependence of the emerging localiza-
tion length scale ξ on energy and density and its micro-
scopic origin requires further investigation.

Power-law tails with r−6 decay are not only found for
the highest excited state but, at low density, also for
all eigenstates at E < 0 with an IPR close to 0.5, i.e.
the |φ+〉 states of dimers. For dimer states at E > 0
we mostly find power-law tails with larger exponents,
but for less localized states also power-law tails with
smaller exponents occur, and even non-monotonous be-
havior is encountered. The algebraic tails emerging in
power-law hopping models can be understood within a
perturbative picture. Consider an eigenstate |φn〉 well
localized around rm with extent ξ. In the case of an
eigenstate localized predominantly on a pair of close-by
sites, ξ can be taken to be the spacing of the dimer. We
now consider the effect of particle j at distance r � ξ
from rm perturbatively. The perturbing Hamiltonian is
Hj = −

∑
i Vij |i〉 〈j|+ h.c., where the sum runs over the

sites on which |φn〉 is localized. In non-degenerate per-
turbation theory, the lowest order correction to |φn〉 is
|j〉 〈j|Hj |φn〉 /En ∝ r−3 |j〉. Thus the perturbed eigen-

state has a population |c(n)j |2 ∝ r−6 on site j. As we ar-

gued above [see Eq. (5)], in the case of states localized on
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FIG. 4. Radial density of highest energy eigenstates for N =
10000 at ρ = 0.1 and ρ = 0.5 in a single logarithmic (a) and
in a double logarithmic (b) plot. Note that here only a single
state was chosen, hence no disorder averaging was performed.
We chose the radial bin size to be δr = 3 for the case ρ = 0.1
and δr = 2 for ρ = 0.5. While for small density (blue) the
state decays entirely with power law r−6, the state for the
high density (orange) shows an exponential onset, see dashed
line in (a), with a subsequent power-law tail.

a dimer, predominantly the symmetric eigenstate (with
eigenenergy −Vij) couples to a distant third atom, ex-
plaining the observation that only dimers at E < 0 show
clean r−6 tails. Also, our perturbative argument assumes
non-degenerate unperturbed eigenstates, which is only
guaranteed for the highest and lowest energy states. In
general, resonances can occur if, for example, two dimers
with very similar Vij exist at different locations. In this
case, the two pairs can hybridize leading to eigenstates
with population peaks at very distant locations, caus-
ing non-monotonic behavior of n(r). We note that the
highest excited state shown in Fig. 4 is actually a trimer
in the ”line” configuration, for which the highest energy
state does couple to distant single sites.

C. Finite-size scaling analysis

We now turn to the question whether the delocal-
ized states observed at high densities are truly extended
in the sense that their extent scales with the system
size. We characterize the nature of an eigenstate |φn〉 =∑
j c

(n)
j |j〉 by considering the asymptotic scaling of the
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FIG. 5. System-size dependence of IPR and GFD for ρ = 0.5. (a) IPR at different energies [color encoded, see panel (b)]. The

dashed gray line shows the behavior of the ground state. (b) Density plot of the energy-binned GFD D̃2. The panel on the left
shows the DOS for N = 32000 with the energies corresponding to the courses of IPR from (a) highlighted as colored lines. (c)
Generalized fractal dimension for selected energy windows matching those shown in (a). The inset shows an enlargement of the
data around the apparent asymptotic value. The horizontal dashed line serves as a reference. We used atom numbers between
N = 30 and N = 32000 and the number of disorder realizations interpolates between 106 for N = 30 and 200 for N = 32000.
The energy was divided into 200 bins which amounts to ∆E ≈ 0.038.

moments

Iq(φn) =
∑
j

|c(n)j |
2q ∝ N−τq(φn) q ∈ R+ (7)

with system size N [51, 52]. For q = 2 we recover the
inverse participation ratio I2 = IPR defined above. For
localized states Iq is independent of system size and thus
τq = 0 for any q ≥ 1. For ergodic states, which are spread
out over the entire system, one obtains τq = q−1 for all q.
In particular, the IPR scales as N−1 as discussed above.
The asymptotic scaling behavior of Iq is conveniently de-
scribed by the fractal dimension Dq = τq/(q − 1), such
that Dq = 1 for ergodic states and Dq = 0 for localized
states. Non-ergodic extended states, with 0 < Dq < 1
being q-dependent, are called multifractal. In order to
assess the asymptotic (N → ∞) scaling based on exact
diagonalization data at finite N , we introduce the finite-
size generalized fractal dimensions (GFD) [53–55]

D̃q(φn) =
1

1− q
logN Iq(φn) (8)

Since Dq = limN→∞ D̃q one can uncover multi-fractal

behavior if D̃q saturates at some finite value in the limit
of large N . In the following we investigate this scaling
behavior restricting to the case of q = 2, i.e. the IPR, and
focusing on the highest considered density of ρ = 0.5.

The system-size dependence of the IPR is shown in
Fig. 5(a) averaged over states with eigenenergies in a win-
dow around certain energies [color encoded as indicated
in Fig. 5(b)]. In the double-logarithmic plot multifrac-
tal behavior would be visible as an asymptotically linear
dependence with a slope between 0 (localized) and −1
(ergodic, dashed black line). It indeed seems that for
states at E > 0, after an initial decrease, the slope of
the IPR, representing the fractal dimension, approaches

zero at large N [purple line in Fig. 5(a)] indicating full
localization, while at E < 0 states with finite fractal di-
mension appear. In turn, the ground state (dashed gray
line), after an initial linear decrease, clearly becomes lo-
calized.

To further scrutinize these observations we show the
GFD D̃2 as a function of energy and system size in
Fig. 5(b) and (c). Close inspection of the N -dependence
reveals that the seemingly multifractal states in the bulk
of the spectrum do not converge to a constant value of D̃2

at large N . In particular, we find a decreasing trend for
states at E < 0 for N > 103 [red line in Fig. 5(c)] after an
initial increase. Thus, the apparent mobility edge turns
out to soften at large N indicating that E = 0 ceases
to be a special point asymptotically. Also, at very small
energies (blue line) the GFD decreases at large N , visible
also in (b) as a region of small GFD at low energy which
grows with N . The ground state GFD shows a glob-
ally decreasing trend. In between (around E = −2) we
observe a spectral region where the GDF is still increas-
ing with N up to the largest system sizes considered.
However, the inset of Fig. 5(c) shows that the GDF is
concave in all cases suggesting an eventual decrease. We
have also studied the N -dependence of the GFD at a
slightly smaller density of ρ = 0.45 where at large system
sizes a downward trend is found at all energies. We take
these numerical observations as evidence that eventually
all states become localized even at the highest densities.

Another indicator of localization is the level spacing
statistics. Specifically, the level spacing ratio is expected
to take certain values for localized and ergodic systems,
respectively, predicted by random matrix theory. In ap-
pendix A we show that at finite system sizes parts of
the spectrum show level statistics close to the expecta-
tion for ergodic states. However, the level spacing ratio
globally (at all energies) decreases towards the localized
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value asymptotically at large N , confirming our conclu-
sion that all states eventually become localized.

Finally, we note that the oscillations in D̃2 visible at
low energies and small N in Fig. 5(b) are due to finite-size
effects, as explained in detail in appendix B. In brief, the
lowest lying eigenstates can be understood in terms of a
quasi-continuous picture. States minimize their energy
by localizing at the minimum of a mean-field potential.
For small system sizes, the walls of this mean-field po-
tential are given by the system boundaries, which leads
to an energy gap between the ground and excited state
within this potential, visible as oscillations in the den-
sity of states and IPR. This also explains that, e.g., the
blue line in Fig. 5(a) shows a piecewise ergodic behavior:
Each section of linear decrease corresponds to an individ-
ual low lying state, e.g. the ground state, which explores
the full system and thus grows with system size.

In conclusion, our numerical results indicate that all
eigenstates are localized in the limit N → ∞, but their
extent can be extremely large at high densities. This has
implications for experiments, which are naturally limited
in system size. Localization effects will be difficult to ob-
serve experimentally in this regime as discussed in detail
in the following section.

IV. OBSERVING LOCALIZATION EFFECTS

The spectral and eigenstate properties discussed in the
previous section cannot be probed directly experimen-
tally. In this section we explore how localization effects
manifest in the dynamical spreading of an initially lo-
calized excitation. We find that for low densities and
sufficiently large system size localized eigenstates cause
excitation spreading to halt before reaching the system
boundary. At high densities the extent of the wave func-
tion at late-times scales with system size as a result of
finite-size delocalized eigenstates. At low densities the
late-time excitation density decays radially following a
stretched exponential function. Turning to realistic ex-
perimental scenarios we find that decoherence effects will
strongly limit the regime in which localization effects are
observable. Decoherence is found to lead to sub-diffusive
excitation spreading and eventual complete delocaliza-
tion.

A. Unitary dynamics

We start by comparing the propagation of an initially
localized excitation for different densities. The initially
excited atom is placed in the center of the system for each
disorder realization. In the following, we refer to this ini-
tial state as |ψ0〉. The dipole-dipole interactions will now
lead to an expansion and spread of the excitation. For
t→∞ the expansion can either reach the boundaries of
the system or localization effects prevent further spread-
ing. The occurrence of the latter is illustrated in the time

t = 0 t > 0 t→∞
Time
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FIG. 6. (a) Propagation of a single excitation in a Rydberg
gas with N = 3000 atoms and ρ = 0.1. The probability Pj(t)
of atom j for being in state |↑〉 is color encoded with blue
for low and red for high probability. The spreading stops
before reaching the system boundaries. Thus, the excitation
is localized for t → ∞. (b) Time dependence of the mean
square displacement 〈r2(t)〉 simulated with systems of N =
5000, 4000, 3000, 2000, 1000 atoms for ρ = 0.5, 0.3, 0.2, 0.1,
respectively, with a fixed system size of R = 50, averaged over
2000, 2500, 3333, 5000, 10000 random configurations. The
markers on the right side represent the asymptotic late-time
value 〈r2(t→∞)〉 given by Eq. (10).

evolution of Fig. 6(a).
We determine the population of all sites, i.e. the prob-

abilities Pj(t) = | 〈j| exp(−iHt) |ψ0〉 |2 for finding the ex-
citation on atom j after time t, for a discrete grid of
times. These populations are obtained straight forwardly
from the eigenvalues {En | 1 ≤ n ≤ N} and eigenstates
{|φn〉 | 1 ≤ n ≤ N} of the Hamiltonian (4) as

Pj(t) =

∣∣∣∣∑
n

e−iEnt 〈j|φn〉 〈φn|ψ0〉
∣∣∣∣2 . (9)

In the following we will not only compare time depen-
dent propagation, but also differences in the asymptotic
late-time population which is defined via Pj(t → ∞) =

limT→∞
1
T

∫ T
0
dt Pj(t). Using the expression for the pop-

ulation from Eq. (9) and exploiting that there are no
degeneracies, this results in the diagonal ensemble ex-
pectation

Pj(t→∞) =
∑
n

∣∣〈j|φn〉∣∣2∣∣〈φn|ψ0〉
∣∣2 . (10)
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which only depends on the properties of the eigenstates
overlapping with the initial state.

To further quantify the spreading of the excitation
through an ensemble we introduce the mean square dis-
placement (MSD) 〈r2(t)〉, which characterizes the mean
expansion and is the most common measure of the spa-
tial extent of random motion. The MSD is given by

〈r2(t)〉 =
∑N
j=1 r

2
jPj(t), where rj = |rj | is the distance

of atom j to the position of the initial excitation at the
origin. The MSD is bounded above due to the finite size
of our system. Its maximal value 〈r2〉max = R2/2 is ob-
tained for a homogeneous probability distribution with
Pj = 1/N ∀j.

1. Temporal excitation spreading

In Fig. 6(b) the transport process of a single excitation
is illustrated via the MSD for multiple densities. We
kept the system size constant and adjusted the number
of atoms to achieve a given density. The markers on the
right end of each curve represent the asymptotic late-time
value of the MSD.

We observe an initial ballistic spreading (〈r2(t)〉 ∝ t2)
with a velocity that increases with density. This behav-
ior is expected due to the generic quadratic onset of the
evolution of populations under unitary dynamics. The
velocity is determined by the typical nearest neighbor in-
teraction strength which increases with density. The bal-
listic regime is followed by a slowdown of the spreading
and eventual saturation. A diffusive intermediate regime
(〈r2(t)〉 ∝ t) is not recognizable. The time at which the
saturation regime is reached grows with decreasing den-
sity.

The late-time saturation values of the MSD increase
with density, consistent with less localized eigenstates for
larger ρ. At the largest densities the MSD almost reaches
the system-size limited maximal extent. In contrast, at
small densities the MSD saturates far from the maximal
value indicating localization, i.e. the interference induced
halting of excitation transport.

2. Size of late-time excitation distribution

To decide whether a system is truly localized, i.e. to
exclude that excitation transport is limited by finite sys-
tem size, one needs to examine the system-size depen-
dence of the late-time extension and show that it be-
comes size independent. Figure 7(a) displays the MSD
for t→∞ for four different system sizes as a function of
the density ρ. Up to a density of approximately ρ ≈ 0.2,
the MSD only depends weakly on the system size, in-
dicating localization effects. However, we do observe a
residual increase of the MSD with R in this regime, see
inset of Fig. 7(a). Form the analysis of the spatial shape
of the eigenstates in Sec. III B we can obtain a predic-
tion for the system-size scaling of the late-time MSD.
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FIG. 7. Density and system-size dependence of the asymp-
totic late-time MSD. (a) Asymptotic late-time MSD over den-
sity ρ computed for four different system sizes. For each line
the system radius R was fixed and the number of atoms was
adapted to achieve the desired density ρ. The inset shows
an enlargement of the data between ρ = 0.05 and ρ = 0.15.
Between 3 ·106 disorder realizations for smallest densities and
number of atoms and 500 disorder realizations for largest den-
sities and number of atoms were averaged. (b) Asymptotic
late-time MSD over system size R at ρ = 0.1. The colored
markers correspond to the system sizes used in (a). The atom
number was varied from N = 10 and N = 30000 adapting the
number of disorder realizations between 2 · 106 and 742. The
error bars indicate the standard error of the mean over the
disorder realizations. (c) Distribution of the asymptotic late-
time MSD for all disorder realizations for N = 20000. 5177
disorder realizations were used.

The late-time excitation distribution [Eq. (10)] will in-
herit the power-law tails of the eigenstates. If all eigen-
states had r−6 power-law tails, one would thus expect
that n(r, ψ(t → ∞)) = Pr(t → ∞) ∼ r−6. This would
mean that the deviation of the MSD from its infinite-
N value should scale as

∫∞
R r dr r2Pr(t → ∞) ∝ R−2.

This expectation is, however, not met for large system
sizes, where the late-time MSD does not seem to sat-
urate but keeps increasing linearly with R as shown in
Fig. 7(b). We attribute this effect to rare resonances that
also caused deviations from power-law decay and led to
non-monotonic behavior of the radial excitation density
of some eigenstates (see Sec. III B). Here these resonances
manifest as rare cases where the excitation propagates
extremely far in the asymptotic late-time limit. This
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is confirmed by examining the distribution of late- time
MSDs over disorder realizations in Fig. 7(c). This distri-
bution shows a long tail towards large MSDs. The fact
that this tail is extremely hard to sample is what causes
the large statistical fluctuations of the late-time MSD at
large system sizes visible in Fig. 7(b). We note that the
linear increase of the MSD with R is sub-extensive as the
ergodic value scales as 〈r2〉max ∝ R2.

At high densities the asymptotic MSD scales exten-
sively with the system size (∝ R2) [see Fig. 7(a)], and
the extent of the excitation distribution is comparable to
the system size. This reflects the fact that at densities
ρ & 0.2 eigenstates already show rather small IPRs as
observed in Fig. 2(b).

An interesting feature of Fig. 7(a) is the increase of the
MSD for ρ→ 0. We attribute this to the scale invariance
of the Hamiltonian for low densities. When the mean dis-
tance between nearest neighbors is much larger than the
blockade radius, atom positions are approximately uncor-
related, i.e. not affected by the Rydberg blockade radius.
Thus, a configuration at one density can be described as a
rescaled version of a configuration at another density, as
already discussed in Sec. III A. The corresponding Hamil-
tonians differ from each other only by a global factor such
that the eigenstates and hence also the asymptotic late-
time populations remain the same. Thus, as rescaling
lengths with 1/

√
ρ leaves Pj invariant, the MSD

∑
r2jPj

behaves as ρ−1 for ρ→ 0.
We concluded from Sec. III that full localization in the

large N limit is expected at all densities. What Fig. 7
shows is that one cannot expect to observe this localiza-
tion in the transport properties of an initially localized
excitation in the sense that the average late-time distance
of the excitation from its starting position as a function
of system size saturates for large N . We still see that
for low densities, at a given system size, the width of
the late-time excitation distribution dynamically satu-
rates at a value far below the one of a fully delocalized
state. Also, it is likely that the long-distance propaga-
tion events that are due to rare resonances do not have an
observable effect on experimentally relevant time scales.

The strong system-size dependence of the late-time
MSD for ρ & 0.2 puts stringent bounds on the den-
sity regime in which localization effects can be observed
experimentally. In Rydberg atom experiments typical
system sizes of N . 3000 have been reported in three-
dimensional trap geometries [24, 47]. In quasi two-
dimensional geometries this number will typically be
lower. Thus, already at moderate densities finite-size
effects become inevitable due to the rapidly increasing
spatial extent of the eigenstates, leading to seemingly er-
godic behavior.

3. Radial shape of late-time population distribution

The spatial shape of the eigenstates is expected to
manifest in the asymptotic late-time distribution accord-
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FIG. 8. Radial shape of the asymptotic late-time excitation
density for (a) ρ = 0.1 and (b) ρ = 0.5 with N = 10000
atoms and averaged over 18741 disorder realizations for (a)
and 10000 disorder realizations for (b). We chose the radial
bin size to be δr = 1 for both densities. The colored area
shows the standard error of the mean over the disorder re-
alizations. Note that we used a log-linear scale in the main
panel of (a), while we used a double logarithmic one in (b)
and in the inset of (a).

ing to Eq. (10). We therefore study how Pj(t → ∞)
decreases radially as a function of the distance to the
center. For this we consider the radial excitation den-
sity n(r, ψt→∞), introduced in Eq. (6), where instead of
eigenstates we consider the asymptotic late-time state
|ψt→∞〉 and r is the distance to the cloud center, where
the excitation is initially localized.

In Fig. 8(a), showing n(r) for a density ρ = 0.1
where all eigenstates are localized (PR � N), we find
that the radial density decays as a stretched exponen-
tial function, n(r) ∝ exp

[
−(r/ξ)β

]
at short distances.

The stretched exponential decay is due to superposing
the excitation densities of eigenstates with different de-
cay rates of their exponential short-range behavior (ac-
cording to Eq. (10)). Similarly, the power-law tails of
the eigenstates (see Sec. III B) are expected to reflect in
a power-law decay of the late-time density distribution at
large r. However, here again rare resonances dominate
the large r tails and lead to a long tail of n(r) which does
not show a clear power law [see inset of Fig. 8(a)].

For high densities, where seemingly ergodic states exist
in the bulk of the spectrum, we have already seen in
Fig. 6(a) that the late-time MSD is close to 〈r2〉max which
describes a homogeneous distribution. Interestingly, we
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find that for ρ = 0.5 the late-time radial distribution fits
an algebraic decay ∝ r−1.17 [dashed line in Fig. 8(b)].
This means that the eigenstates are not perfectly ergodic,
in which case a flat late-time excitation density would be
expected.

B. Effects of experimental imperfections

We have shown that at sufficiently low density ρ lo-
calization effects manifest as limited spreading of an ini-
tially localized excitation, which can in principle be ob-
served experimentally. However, the assumptions of uni-
tary time evolution and homogeneous two-dimensional
atom density, under which we made these observations,
are never strictly fulfilled in experiments. The goal of
this section is to make predictions about the possibility
of observing localization effects in two-dimensional en-
sembles with dipolar interactions under realistic exper-
imental conditions. For this we consider the impact of
decoherence due to unavoidable experimental noise and
coupling to the environment, and of non-homogeneous
and quasi two-dimensional atomic clouds. We restrict
our discussion to the case of ρ = 0.1, where Sec. IV A
has shown that localization effects are observable under
idealized assumptions.

1. Decoherence

Single-particle localization is an interference effect
which is destroyed by dissipative processes that reduce
the coherence between different states or paths. Rydberg
atoms have a finite natural lifetime of typically 100µs
(for principal quantum number ∼ 50) after which they
decay to lower lying electronic states and are susceptible
to external fields leading to dephasing noise. Observing
localization is thus a matter of time scales. We therefore
address the question to what extent the excitation stops
spreading due to coherent localization before coherence is
destroyed and incoherent diffusive dynamics takes over.

We model the effect of decoherence by means of a Lind-
blad master equation describing the evolution of the den-
sity matrix ρ, which reads

ρ̇ = −i[H, ρ] +

Lindblad term L[ρ]︷ ︸︸ ︷∑
k

ΓkρΓ†k −
1

2

(
Γ†kΓkρ+ ρΓ†kΓk

)
(11)

with the jump operators Γk. We summarize possible de-
coherence effects by the jump operators Γk =

√
γ |k〉 〈k|

with damping rate γ. Realistic values for γ are 5−10 kHz.
The Lindblad term can be simplified to

L[ρ] = −γ
∑
i 6=j

ρij |i〉 〈j| . (12)
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FIG. 9. Effects of decoherence. (a) Time dependence of
the mean square displacement 〈r2(t)〉 in a system of N =
300 atoms with ρ = 0.1 for different dephasing rates γ =
1, 10, 100, 1000 kHz. We averaged over 500 disorder real-
izations. For better reference to typical experimental pa-
rameters we reverted the time axis to SI units here, using
C3/2π = 0.86 GHzµm3 and rb = 5 µm. (b) Radial popula-
tion density n(r) for γ = 10 kHz at different evolution times
showing the evolution towards a homogeneous distribution.
The radial density for the unitary case (dashed) is shown for
reference as well. We chose the radial bin size to be δr = 2
for all times.

We see that including the phase-damping operators Γk
does not affect the diagonal elements of ρ, or popula-
tions, while the off-diagonal terms, or coherences, de-
cay. For large times any phase coherence is lost and the
dynamics can be described by a classical hopping pro-
cess, resulting in (sub-)diffusive behavior. Time integra-
tion of the Lindblad master equation gives the popula-
tions Pi(t) = ρii(t) from which we calculate the MSD by

〈r2(t)〉 =
∑N
j=1 r

2
jPj(t), as in the unitary case.

Figure 9(a) illustrates the effect of decoherence on the
MSD evolution for different damping rates γ in a sys-
tem with ρ = 0.1 and N = 300 atoms. For compar-
ison, the unitary case is shown, too. After an initial
increase, the MSD transitions into a subdiffusive regime,
i.e. 〈r2(t)〉 ∝ tα with 0 < α < 1, where the observed
α becomes smaller with decreasing γ. For small deco-
herence rates a plateau is visible before the subdiffusive
increase takes over. For very strong decoherence rates
we find purely diffusive expansion with 〈r2(t)〉 ∝ t (not
shown). At late times the fully delocalized state is ap-
proached where the MSD saturates at 〈r2〉max. Localiza-
tion is observed if the plateau of the MSD is developed
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before the classical diffusive dynamics takes over. We find
that a dephasing rate of less than γ = 10 kHz is required
to clearly observe such a plateau. We conclude that with
experimentally realistic dephasing rates of ∼ 10 kHz the
localization plateau in the MSD will be barely visible.
However, increasing the principal quantum number may
allow to increase the Rydberg lifetime and also to increase
the dipole-dipole interaction strength and thus acceler-
ate unitary dynamics, allowing for a clearer observation
of localization effects.

To scrutinize the observation of full delocalization at
late times, Fig. 9(b) shows the radial density for γ =
10 kHz for different evolution times. At late times the dis-
tribution becomes perfectly flat as expected. This late-
time behavior was observed for all dephasing rates, but
takes extremely long to be established for small γ. At
intermediate times, the spatial distribution comes close
to the late-time distribution of the unitary case showing
that the late-time characteristic features of the unitary
transport dynamics are still visible before diffusive trans-
port starts to dominate.

2. Cloud geometry

Experimentally realistic cloud geometries will differ
from the ideal case of a two-dimensional homogeneous
distribution in at least two aspects. First, the cloud
will typically have a Gaussian density distribution with
higher density in the center than near the boundaries.
Second, the system will not be strictly two-dimensional
but also have a finite extent in the transverse direction,
resulting in a pancake-like geometry. We have verified
numerically, in the case of low density and localized eigen-
states, that for a Gaussian density distribution an excita-
tion initially localized in the center spreads very much in
the same way as for a homogeneous distribution with den-
sity corresponding to the peak density of the Gaussian.
Furthermore, an additional transverse density profile also
does not affect the dynamics as long as the transversal
width is σ . rb.

V. CONCLUSIONS AND OUTLOOK

We have studied spectral and eigenstate properties as
well as excitation spreading in a two-dimensional power-
law hopping model. The inclusion of a lower cutoff on the
inter-atomic distances leads to a tunable strength of the
off-diagonal disorder. For strong disorder all eigenstates
are localized with power-law tails and their properties are
dominated by small localized clusters such as dimers. At
finite system size decreasing the disorder strength (in-
creasing the atomic packing fraction) leads to the ap-
pearance of extended states in the bulk of the spectrum.
However, a finite-size scaling analysis indicates that all
states are localized asymptotically in the large N limit.

Previous studies of related models have found similar
indications using complementary tools and observables.
We highlight that [34] studied an anisotropic power-law
hopping model in a two-dimensional lattice with dilute
filling focusing on the level spacing ratio. Consistently
with our results and with theoretical predictions [8], they
found full localization with a localization length growing
quickly with filling fraction. Abumwis et al. [43] studied
a power-law hopping model in two dimensions including
a blockade constraint. They focused on the eigenstate

coherence C(n) =
∑
i 6=j |c

(n)
i c

(n)
j | which is a measure of

delocalization similar to the eigenstate PR. Interestingly,
the coherence seems not to reveal the spectral features
stemming from trimers and tetramers. Also, the spectral
contribution of states that are more strongly localized
than dimers is not obvious. In the three-dimensional
anisotropic case this feature is actually absent [42]. It
would be interesting to investigate this difference be-
tween the two-dimensional and three-dimensional cases
in more detail. The main finding of [42, 43] is the exis-
tence of strongly delocalized states even at strong disor-
der in the three-dimensional case, which is heuristically
understood in terms of a renormalization picture, where
strongly interacting pairs are treated as being decoupled
from all other atoms leading effectively to a less disor-
dered residual system. It would be interesting to ask
how this picture can be applied to understand the exis-
tence of delocalized states in three and their absence in
two dimensions.

The observed fast growth of localization length with
atomic packing density puts constraints on the regime
of densities in which localization effects are observable
experimentally. Limited system size and evolution time
(due to decoherence effects) constrain the optimal den-
sity range above and below, respectively. At too high
density the localization length easily exceeds the system
size leading to seemingly ergodic behavior. At too small
density dynamics are slow and excitation spreading sat-
urates at late times where the assumption of unitary dy-
namics breaks down and incoherent diffusive spreading is
expected. Our detailed study of these constraints allowed
us to identify a packing density of ρ = 0.1 as a workable
point. For rb = 5µm and N = 300 Rydberg spins, this
corresponds to a system size of R ≈ 137µm. Accord-
ing to Fig. 9(a), excitation spreading saturates at time
t ≈ 20µs, requiring a decoherence rate of γ . 10 kHz to
observe localization. All these values are within experi-
mental reach but do not permit a large margin for varying
the Rydberg spin density. Moreover, we observed that
the asymptotic late-time value of the mean propagation
distance of an initially localized excitation does not sat-
urate as a function of system size, but continues to grow
due to rare resonance effects. This precludes the observa-
tion of localization from system size scaling of excitation
transport.

Interesting future extensions of our work include the
study of different power-law exponents and cloud geome-
tries (one and three-dimensional). Experimentally, by
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using two Rydberg s-states as spin states an XXZ model
with r−6 interactions can be realized [24]. In the sin-
gle excitation sector, this corresponds to adding corre-
lated disorder on the diagonal of the hopping Hamil-
tonian. In this setup isotropic interactions can also be
realized in a three-dimensional geometry, in contrast to
the anisotropic direct dipolar exchange interactions. Fur-
thermore, the experimental imperfections should be mod-
eled in more detail. While the present study models
all kinds of decoherence effects as an overall dephasing
process, for example spontaneous emission and atomic-
motion induced dephasing can have rather different ef-
fects and require more careful modeling. Experimentally,
it may also be challenging to prepare precisely one exci-
tation in the cloud. Thus, the case of two or more ex-
citations should be studied, which presents a challenge
to numerical methods due to the exponential growth of
the Hilbert space dimension with the number of exci-
tations. On the theoretical side it will be interesting
to apply more sophisticated analytical tools to the two-
dimensional power-law hopping model. For example, one
could try to extend the duality found for one-dimensional
systems in [33] to the two-dimensional case. One could
apply the analytical treatment based on a renormaliza-
tion procedure introduced in [27] to the present prob-
lem by including the blockade constraint. Self consistent
perturbative methods such as the locator expansion em-
ployed in [41] could be applied to predict spectral and
eigenstate properties in the two-dimensional case.
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Appendix A: Level spacing ratio

In Sec. III we characterized localization effects using
eigenstate properties, in particular the IPR. An alterna-
tive indicator of localization vs. ergodic behavior is the
statistical distribution of spacings δn = En+1 − En be-
tween eigenenergies (sorted in ascending order), which
we analyze in this appendix. The conclusions we draw
from the analysis of the level statistics match the ones
of Sec. III, namely that for finite N at high densities ρ
(low disorder) seemingly ergodic states appear in the bulk
of the spectrum. However, a finite-size scaling analysis
shows that states at all energies tend towards localized
characteristics in the large N limit.

In the following analysis we will focus on the level spac-
ing ratio (LSR) [34, 55–59]:

rn =
min (δn, δn−1)

max (δn, δn−1)
. (A1)

The LSR has certain practical advantages compared to
the distribution of level spacings itself. As it is a di-
mensionless quantity between 0 and 1 it allows the en-
ergy resolved characterization of the distribution of level
spacings without the need of taking into account the lo-
cal spectral density by unfolding the energy spectrum.
An LSR of 0 can only occur if exact level crossings are
present whereas an LSR of 1 implies that adjacent level
spacings are equal. As localized eigenstates are spatially
separated and hence their eigenenergies uncorrelated, one
expects a random level sequence resulting in a Poisso-
nian level spacing distribution. In this case the distri-
bution of rn peaks at zero and its average is predicted
as 〈r〉P ≈ 0.386. On the other hand, ergodic states ex-
tended over the whole system show spatial overlaps and
consequently level repulsion. The level spacing distri-
bution peaks at a finite value and is expected to follow
a Wigner-Dyson distribution, which is the distribution
found for random matrices. The model studied here
has the symmetry properties of Gaussian orthogonal en-
semble (GOE) for which random matrix theory predicts
〈r〉GOE ≈ 0.53.

1. Dependence on energy and density

Fig. 10(a) shows the LSR binned into energy windows
for two different densities and a moderate system size
with N = 2000 atoms. At low density the level spacing
ratio agrees well with 〈r〉P throughout the bulk of the
spectrum, as expected for localized states. This is consis-
tent with our analysis of the IPR [compare to Fig. 2(b)].
The large variance in the eigenstate character observed
around E = 0 in the IPR does not manifest in the shown
LSR plots due to the averaging over the ratios within
each energy bin. At high density we observe that only
the upper end of the spectrum shows an LSR close to
〈r〉P. The E < 0 part of the spectral bulk is consistent
with 〈r〉GOE, corresponding to ergodic states. This again
confirms the findings of Sec. III. The fluctuations of rn in
the low energy tail of the spectrum are caused by finite-
size effects further discussed in appendix B and by poor
statistics due to a small density of states.

For a more detailed test of the consistency of the ob-
served behavior with random matrix theory predictions
we study the frequency distribution of rn within se-
lected spectral regions. For systems with Poissonian and
Wigner-Dyson level spacing distribution, respectively,
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FIG. 10. (a) Level spacing ratio binned into energy windows for ρ = 0.5 and ρ = 0.1. The energy was divided into 300 bins
which amounts to ∆E = 0.023. (b) Distributions of the LSR for the data from the spectral regions highlighted in gray in (a).
The light green and black dashed lines show Eq. (A2) for Poisson and Eq. (A3) for Wigner-Dyson. Here we divided the ratios
into 500 bins with ∆r = 0.002. (c) Overview of the LSR divided into several energy windows for all densities. 1000 bins were
used with ∆E = 0.008. All data was obtained using for each density N = 2000 atoms and 50000 disorder realizations. The
system parameters are the same as in Fig. 2.

the predicted distributions of rn are [57–59]

P (r) =
2

(1 + r)2
for Poisson (A2)

P (r) =
2

Z

(r + r2)b

(1 + r + r2)1+3b/2
for Wigner-Dyson (A3)

The constants b and Z are ensemble dependent and take
the values b = 1 and Z = 8/27 for the GOE. In Fig. 10(b)
we compare the numerically obtained distributions to
these predictions. We restrict to the spectral regions con-
sistent with 〈r〉P and 〈r〉GOE for the low and high density
case, respectively. The regions are highlighted in gray in
Fig. 10(a). The observed distributions coincide very well
with the theoretical prediction of Eqs. (A2) and (A3)
shown as light green and black dashed lines in the figure.
The agreement is remarkable given that random matrix
ensembles assume uncorrelated matrix elements while the
elements of our hopping Hamiltonian (4) are correlated.
Similar to the discussion in Sec. III it is tempting to con-
clude from this that a transition from a fully localized
phase at low density to a partly ergodic phase at high
density with a mobility edge at E = 0 exists. A careful
study of system-size dependence, however, shows that the
ergodic phase may disappear in the large N limit.

In Fig. 10(c) we show the binned LSR as a function
of both energy and density. We observe that the LSR
increases smoothly with density in all parts of the spec-
trum and the high-energy part of the spectrum shows
statistics of localized states even for the highest densi-
ties. The energy at which the transitions from Poisson-
like to Wigner-Dyson-like statistics happens depends on
density and is not necessarily at E = 0. All these obser-
vations are consistent with what was found for the IPR
in Fig. 2(b).
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FIG. 11. System size scaling of the LSR. (a) Binned LSR
for increasing system sizes with fixed density ρ = 0.5. We
used N = 70, 500, 5000, 32000 atoms and averaged over
5 · 105, 105, 104, 200 disorder realizations, respectively. 500
energy bins were chosen with ∆E = 0.014. (b) Distributions
of the LSR of states within the energy interval marked in (a).
Here we divided the ratios into 200 bins with ∆r = 0.005.

2. System size scaling

To address the question whether the ergodic region
persists in the large N limit we now study the system-
size dependence of the LSR systematically. We calcu-
lated the LSR for multiple system sizes for a fixed den-
sity ρ = 0.5, as shown in Fig. 11(a). For small N we
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observe pronounced fluctuations at low E which are due
to finite-size effects and will be discussed in the next sec-
tion. We find that the region of Poissonian level statistics
at large E becomes wider with increasing system size. At
all energies the LSR decreases as a function of N , except
in the regions where the LSR fluctuates due to finite-
size effects (see appendix B 1). The observations suggest
that all states eventually become localized and the level
statistics Poissonian at large N , confirming the findings
of Sec. III.

To further scrutinize this trend we examine the distri-
bution of the LSR in a fixed energy window, marked in
Fig. 11(a), as a function of N . Figure 11(b) shows that
the distribution changes from Wigner-Dyson level statis-
tics for small N to Poissonian for large N . Thus, while
for small system size the chosen energy interval primarily
contains extended states, the degree of localization grows
for increasing system size. We conclude that signs of er-
godicity are caused by finite-size effects and disappear in
the limit of large atom number.

Appendix B: Low-energy spectral properties

In this appendix we provide a microscopic understand-
ing of the eigenstate properties at the low-energy end
of the spectrum. For high atom densities these states
can be interpreted intuitively as bound states in a quasi-
continuous mean-field potential, as we show in Sec. B 1.
This allows us to straight forwardly interpret the origin
of the oscillations in the IPR, GFD and LSR that have
been observed for small system size N and high density
ρ in Figs. 5 and 11(a), and that we study in more detail
in Sec. B 2.

1. Quasi-continuous mean-field picture

In this section we introduce and microscopically jus-
tify a quasi-continuous mean-field picture for explaining
the properties of low-energy states. Our reasoning builds
on a variational minimization of the energy expectation
values [see Eq. (4)]

E(ψ) = 〈ψ|H |ψ〉 = −
∑
i6=j

Vijc
∗
i cj (B1)

with respect to the coefficients of a general normalized
state |ψ〉 =

∑
j cj |j〉. Since the Hamiltonian is real, we

can restrict to real cj . The interaction strength Vij is
positive for all (i, j) such that any pair (ci, cj) of coeffi-
cients with opposite sign will lead to an energy increase
in Eq. (B1) compared to the case of equal signs. Thus, in
the ground state all coefficients will have the same sign.
To see how the amplitudes |cj | should be distributed in
order to minimize the energy, we consider the gradients

∂E(ψ)

∂cj

∣∣∣∣
ci=1/

√
N

= − 1√
N

∑
i 6=j

Vij (B2)
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FIG. 12. Comparison of the population of ground state (a)
and the absolute value of the mean-field potential (b) for an
example configuration with ρ = 0.5 and N = 150 atoms.

of the energy evaluated for homogeneously distributed
coefficients |cj | = 1/

√
N . The negative gradient is largest

for the atoms with the smallest ”mean-field potential”
V mf
j = −

∑
i 6=j Vij . This means that it is energetically

favorable, compared to a homogeneous distribution of
amplitudes, to enlarge the amplitudes of coefficients with
low mean-field potential. Consequently, the ground state
will be localized in the region of deepest mean-field poten-
tial, corresponding to regions of high local packing den-
sity of atoms. Figure 12 confirms this reasoning, where
an example with N = 150 atoms and ρ = 0.5 is shown.

The excitation probability |c(0)j |2 of the ground state wave
function is highest in the regions of deep mean field po-
tential, i.e. large |V mf

j |. We observe that at such high
atom density ρ, the regions with locally highest density,
i.e. deepest mean-field potential, show regular hexagonal
structures of densely packed atoms at distance rb from
each other.

Excited states cannot have a homogeneous sign struc-
ture as long as the ground state wave function has sup-
port on all basis states since the orthogonality of eigen-
states could not be fulfilled in this case. The sign struc-
ture that introduces the smallest energy penalty is one
where we have two groups of spins with opposite sign
separated by a boundary line. The excitation proba-

bilities |c(n)j |2 of atoms near the boundary line are sup-
pressed in order to minimize the energy increase due to
the sign boundary. In a two-dimensional situation there
are two different orthogonal states that can be created
in this way. These states with different sign boundary
lines are energetically close to each other. The boundary
lines are expected to run through regions of lower local
density as this minimize the states’ energy. With the
same reasoning we can construct further states respect-
ing orthogonality with all previously constructed states
while minimizing the energy increase. From this we ex-
pect next a group of three eigenstates with three different
equal-sign domains separated by boundary lines. These
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FIG. 13. Populations and sign structure of the first six eigenstates for a system with ρ = 0.5 and N = 700 atoms. The states
form groups of near-degenerate states, reminiscent of the eigenstates of the two-dimensional harmonic oscillator potential.

expectations are confirmed in Fig. 13, which shows pop-
ulations and phases for the lowest six eigenstates of a
system of N = 700 atoms and density ρ = 0.5. The
features of populations and sign structure are perfectly
reminiscent of the bound states in a two-dimensional po-
tential well. For the highest energy state (not shown), in

contrast to the ground state, the signs of c
(n)
j alternate

between neighboring atoms, which can be analogously
understood by variational maximization of the energy.

To summarize, the variational construction of low-
energy eigenstates leads to an intuitive quasi-continuous
picture in which these states can be viewed as bound
states within the potential V mf .

2. Energy gaps for small system size and high
density

We now apply the picture developed in the previous
section to interpret features of the DOS and IPR in the
low-energy tail of the spectrum. Figure 14(a) shows the
DOS for high density (ρ = 0.5) and small atom num-
ber (N = 30). We find pronounced oscillations at low
energies. By collecting the energies of the energetically
lowest eigenstates resulting from different disorder real-
izations in separate histograms, as shown in Fig. 14(b),
we find that the first peak represents the ground state.
The gap between the ground and excited states exceeds
the disorder induced fluctuations in the ground state en-
ergy. The second peak in the DOS is caused by the first
and second excited state as the gap between them is much
smaller such that disorder averaging blends their spectral
contributions into each other. Similarly, we can identify

another gap and then a group of three states causing
the third peak in the DOS. Using the intuition devel-
oped above we can understand these features by viewing
the low lying states as bound states within a mean-field
potential (see Sec. B 1). In a spherically symmetric two-
dimensional potential the degeneracy of excited states
increases linearly as discussed above.

We observed that the shape of the disorder-broadened
spectral contributions of individual eigenstates are con-
sistent with a Gaussian distribution. This is shown by
the dashed black line in Fig. 14(b) which corresponds to
a Gaussian fit to the distribution of the third eigenstate
shown in red. The width of the distributions increase
with decreasing density (not shown) leading to the disap-
pearance of the oscillations in the DOS at lower densities.
This is expected since at lower density the inter-atomic
distances fluctuate more strongly between different dis-
order realizations leading to increased fluctuations in the
depth of the mean-field potential and thus larger fluctu-
ations of the ground state energy.

Figure 14(c) shows the participation ratios of individ-
ual eigenstates. We find that the PR is on the order of N
for the low lying states, suggesting that finite-size effects
are dominating their properties. Examining the PRs for
larger system size, N = 1000, shown in Fig. 14(d), we
find that the gap between ground and excited states de-
creases, while states are still widely extended and the
separation between different low-energy states is clearly
visible. At larger system sizes, the oscillations in the
DOS indeed disappear [see Fig. 2(a.iii) for N = 2000].

These features can be interpreted straight forwardly
in our mean-field picture. For small system sizes the
ground state is extended over the whole system and is
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FIG. 14. Oscillations in the low energy sector for high density
and small system size. (a) Energy-resolved DOS for ρ = 0.5
and N = 30 atoms with an accumulation over 106 disor-
der realizations. The energy was divided into 1000 bins with
∆E = 0.007. (b) Distribution of individual eigenenergies over
the random atom arrangements for each of the first ten eigen-
values showing the same data as (a). The dashed black line
shows a Gaussian fit to the third eigenstate. (c) Eigenstate-
resolved PRs corresponding to the data of (a). Again the col-
ors indicate each of the ten lowest eigenstates. Here 105 disor-
der realizations are shown. (d) PR for ρ = 0.5 and N = 1000
atoms with 20000 disorder realizations.

only confined by the walls of the potential V mf that are
given by its increase at the system boundary, where a
given atom simply has less neighbors, and thus larger
V mf
j = −

∑
i 6=j Vij . The observed decrease of the gap

between ground and excited states with N results from
a wider mean-field potential, or microscopically, from a
smaller energy penalty from introducing a sign bound-

ary due to the larger spatial extent of the ground state.
In this finite-size dominated regime the PR of the low-
est lying states increases linearly with system size, which
leads to an apparent fractal dimension of D̃2 = 1, seen
as a piecewise linear decrease of the IPR of the blue and
orange lines at small N in Fig. 5(a).

Let us recall here that Fig. 5(a) showed that the ground
state IPR eventually levels off and becomes independent
of N , meaning that the ground state becomes localized.
In our mean-field picture this means that the ground
state is localized in a local minimum of the mean-field po-
tential and does not feel the potential caused by the sys-
tem boundaries any more. In this regime there can also
be various local minima of similar depth in the mean-field
potential (corresponding to regions with densely packed
atoms). Consequently one expects that energy levels be-
come increasingly uncorrelated and tend towards Pois-
sonian level statistics. The onset of this trend is what
we indeed observe in Fig. 11. However, showing this ef-
fect clearly, requires very large system sizes. Our quasi-
continuous mean-field picture implies that the low en-
ergy part of the spectrum can be understood in analogy
to a particle in a continuous random potential, which is
known to show Anderson localization in less than three
dimensions.

As a last interesting observation we note that the PR
of the ground state, and to a lesser extent also the first
few excited states, is correlated with its energy. Ground
states with lower energies tend to be more strongly local-
ized [see Fig. 14(c) and (d)]. In our mean-field potential
picture this is intuitively expected as stronger localiza-
tion means that the state sits in a narrower and deeper
potential well and thus has a lower energy. In the micro-
scopic view, ground states with low energies are localized
on more densely packed but smaller domains than states
with larger extent that experience a lower density on av-
erage and thus have higher energy.
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