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Sustainable operation of research infrastructure
for novel computing

Yannik Stradmann∗, Joscha Ilmberger∗, Eric Müller, and Johannes Schemmel

Abstract—Novel compute systems are an emerging research
topic, aiming towards building next-generation compute platforms.
For these systems to thrive, they need to be provided as research
infrastructure to allow acceptance and usage by a large community.
By the example of the neuromorphic BrainScaleS-2 system,
we showcase the transformation from a laboratory setup to a
sustainable, publicly available platform. It is embedded into a
purpose-built institute, tightly coupling a conventional cluster with
novel compute hardware. The network infrastructure is optimized
for robust operation, even in the case of unintended behavior of
individual devices. The systems themselves are packaged into 19-
inch compatible units to allow for easy maintenance and extension.
We operate the platform using modern CI/CD techniques and
continuously assert its health using automated system monitoring.
Finally, we share our lessons learned during the decade-long
endeavor of operating analog neuromorphic systems as a publicly
available research platform.

Index Terms—analog computing, platform operation, continu-
ous integration

I. INTRODUCTION

Neuromorphic hardware describes a variety of novel com-
puting approaches aiming to mimic data processing strategies
found in neurobiology. Taking inspiration from the sparsity in
communication found in such spiking neural systems, many of
these devices target ultra-low-power edge applications [1]–[8].
As such, they are usually developed and deployed as standalone
system-on-chips (SoCs). In contrast, large-scale digital systems
have been put forward to accelerate compute-intensive work-
loads and facilitate research in cognitive neurosciences [6], [9]–
[13]. Combining both approaches, the BrainScaleS-2 (BSS-2)
platform embeds an analog neural network core into digital
periphery. It targets biologically inspired multi-timescale online-
learning experiments and therefore emulates neuronal dynamics
with a speed-up factor of 1 000 compared to biological real-
time [14].

BSS-2 is envisioned as a versatile research platform for the
interdisciplinary fields of cognitive neurosciences and machine
learning, requiring continuous operation and remote accessibil-
ity. It combines a user-facing software stack and services [15],
with physical infrastructure to host the neuromorphic platform.
In contrast to many systems based on novel materials, the
BSS-2 ASIC uses analog CMOS devices as computational
units and therefore does not require a specialized operational
environment. Combined with the maturity of the platform,
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Figure 1. BrainScaleS-2 platform in the machine hall of the European Institute
for Neuromorphic Computing. Two rack cabinets house up to 16 systems,
each containing two ASICs. They are placed on retractable drawers to allow
convenient access for maintenance. Each of these contains all components
for operation, requiring only mains supply and a single Ethernet uplink. Both
are supplied using local cable passages through the floor to the server room
beneath (not visible in the picture).

this allows us to adopt practices established by data center
operation.

This manuscript describes the physical infrastructure for
operating BSS-2, one of the world’s largest analog compute
systems (Fig. 1). We will introduce the Ethernet-based network
topology, the composition of the setup, continuous integra-
tion workflows, and health monitoring. Finally, we describe
lessons learned during the multi-year efforts of operating this
infrastructure in an academic setting.

II. NETWORK INFRASTRUCTURE AT EINC

The European Institute for Neuromorphic Computing (EINC)
is purpose-built to host research of novel compute systems
at large scale. Across four floors, it houses a state-of-the-art
server room, a machine hall, and laboratories: In its maximum



2

spine
switchcore switch

cluster

100G DAC 100G LR4

lab host

10G DAC

server room laboratory

lab device
USB

40G DAC

leaf
switch 1G TP

BSS-2

100G DAC

leaf
switch 1G TP

BSS-2

spine
switch

spine
switch

machine hall

leaf
switch 1G TP

BSS-2

Figure 2. Network infrastructure of the BrainScaleS-2 (BSS-2) systems, as installed at the European Institute for Neuromorphic Computing (EINC). The
installation is distributed across three floors: Users execute experiment code on a compute cluster in the basement, where all nodes are equipped with a
dedicated 100 GbE uplink for experiment traffic. They connect to a 100 GbE core switch, which in turn provides connectivity to the machine hall (production
systems) and laboratories (test systems) via fiber-optic connections. In both cases, each rack has a small 100 GbE spine switch, splitting to multiple 10 GbE leaf
switches. Up until this point, all network traffic consists of multiple VLANs dedicated to experiment and management data. The leaf switch finally provides
untagged 1 GbE connections to the BrainScaleS-2 setups.

designed configuration, the server room can accommodate
63 racks with 1.5 MW “indirect free cooling” capacity. The
conventional compute cluster in operation consists of 26 nodes
spread across three racks with a total installed energy budget of
30 kW. Users execute neuromorphic experiments on the BSS-2
platform via this cluster (Fig. 2). It orchestrates hardware access
and transfers data to and from the systems, each utilizing a
1 GbE link. A core switch (HPE FM3032Q) interconnects all
cluster nodes with the neuromorphic hardware in the machine
hall and laboratories via 100 GbE. This dedicated physical
network is segmented in multiple IEEE 802.1Q VLANs for
experiment and different categories of management data:

1) Infrastructure management (power distribution, network)
2) Cluster node management (IPMI)
3) BSS-2 system management
4) Experiment data to/from BSS-2 systems

Together with queing disciplines providing minimum bandwidth
guarantees, this separation ensures management access in case
of unintended behavior of any experiment device, such as
denial-of-service.

Network traffic from the server room is distributed to
the machine hall (production systems) and laboratories (test
systems and maintenance) using fiber-optic connections. In
both cases, it is further distributed through 100 GbE spine
switches (Mikrotik CRS504-4XQ-IN) to leaf switches (Mikrotik
CRS326-24G-2S) via 40 GbE-to-4×10 GbE breakout cables.
Here, the VLANs terminate into untagged 1 GbE ports, to
which individual BSS-2 systems connect. They are comprised
of one management controller (VLAN 3) and two ASICs, which
communicate experiment data via FPGAs (VLAN 4).

In addition to this common infrastructure, the laboratories
are equipped with remote cluster nodes that accommodate
for measurement equipment without networking capabilities,
such as USB devices. This setup enables a location-agnostic
operation of the BSS-2 systems in production and during
maintenance.

The chosen network hierarchy supports concurrent operation
of all neuromorphic systems at line speed, with headroom for
future extensions.

III. SYSTEMS

We house all BSS-2 systems in conventional 19-inch rack
cabinets, which allows easy integration with off-the-shelf
components for power distribution and networking. Since
the neuromorphic systems have originally been developed for
laboratory use, their physical form factor does not comply with
this standard. We therefore mount them on retractable drawers,
which allows easy access and removal for maintenance. Figure 3
shows such a unit, where—in addition to two BSS-2 systems—
all components necessary for operation from mains power and a
single network uplink are placed. Specifically, we provide 12 V
DC power through a single AC adapter per drawer, which feeds
all FPGAs, digital periphery, system controllers and cooling
fans. The ASIC supplies are derived from a separate 6 V AC/DC
adapter per system to prevent coupling of digital noise into the
analog circuits. Data connectivity is established through a single
10 GbE uplink, which provides multiple separate VLANs. The
managed Ethernet leaf switch exposes these virtual networks
as untagged ports for the experiment systems and their ARM-
based system controllers.

This controller has been inherited from the previous genera-
tion of BrainScaleS [16]. It provides I2C and JTAG connections
to the associated neuromorphic system for power management
and configuration. In addition, it continuously collects 29 health
metrics, such as power supply status and temperatures. This data
is streamed to a database over a dedicated Ethernet connection
(see Section V). Over the same interface, users can remotely
access system management functionality and JTAG connections
to all FPGAs.

IV. PLATFORM INTEGRATION INTO CI/CD

To ensure robust operation of the BSS-2 platform, we employ
a workflow based on continuous integration and -delivery
(CI/CD). In addition to human review, any change to software or
hardware components proposed by a developer is automatically
verified in simulation and on the hardware systems. As such,
the BSS-2 platform itself is tightly integrated into the CI/CD
workflow. We demonstrate the steps involved by the example
of an in-review software modification that requires an update
of the system’s FPGA design (Fig. 4)
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Figure 3. A single drawer of the BrainScaleS-2 platform, containing two
systems2 and all necessary periphery for operation from mains power and
a single 10 GbE uplink. This includes ARM-based system controllers, three
power supply units and the leaf switch also shown in Fig. 2.

1) The developer modifies the RTL code of the FPGA
locally. They indicate the co-dependent software change
in the commit message and push the patch to the Gerrit
code review system.

2) Gerrit notifies a security-hardened Jenkins instance with
access to commercial EDA tools about this proposed
changeset. This triggers multiple jobs in parallel:

a) RTL-based simulations of the BSS-2 system (ASIC
and modified FPGA). The executed testsuite in-
cludes all referenced software modifications.

b) Build of the FPGA design, resulting in a binary
hardware configuration. This file, together with
metadata, is distributed to a cluster-wide staging
area.

3) Once step 2b has completed, a second—less restricted—
Jenkins instance is triggered to perform downstream
verification on the physical hardware systems:

a) It builds the BSS-2 software stack [19] together
with test suites ranging from transport-layer vali-
dation to full-stack experiments—again, including
the referenced software modifications.

b) A BSS-2 hardware setup is allocated and the staged
configuration from step 2b is loaded into the FPGA.
Subsequently, the prepared test suites are executed
on the hardware system.

4) All test results are aggregated and reported to the Gerrit
instance in form of a mandatory vote.

5) After the changeset has additionally been approved by a
human reviewer and submitted by the author, a release
build is run and delivered as new stable version.

The strong isolation of individual system components
described in Section II as well as the runtime reconfiguration
of the FPGA allows for verification of work-in-progress
changesets that may introduce unintended behavior.

2The shown BrainScaleS-2 systems have been developed in collaboration
with the Chair of Highly-Parallel VLSI Systems and Neuro-Microelectronics
at Technische Universität Dresden.

The tight integration of the BSS-2 hardware platform into the
development workflow ensures robust operation. Additionally,
this standardized workflow enables efficient collaboration of
researchers throughout all levels of seniority.

V. OPERATIONAL MONITORING

The health of the BSS-2 platform is continuously monitored
on multiple levels ranging from high-level experiment fidelity
through network availability to power supply status. We collect
any time series data in a Graphite database, event-like data
in InfluxDB and use Grafana for visualization and alerting.
In addition, system operators annotate events, such as power
outages or maintenance, directly within the monitoring data.

We collect information about the system state on multi-
ple timescales: Nightly Jenkins jobs assess the fidelity of
experiments, such as training of spiking neural networks for
classification tasks. Similarly, we run bihourly high-level health
checks on all unoccupied systems. These validate the overall
system state, including tests for SRAM access, high-speed
communication channels, and ASIC power supplies. In addition,
we read out and store the currently configured FPGA design
revision for future reference.

Data that has to be available on a finer timescale is collected
using dedicated monitoring services: Once every minute, we
execute ICMP echo- and ARP requests from a central host
to the FPGAs of all BSS-2 systems and evaluate the results
in terms of response ratio and -time. Physical monitoring
data, specifically supply voltages and system temperature, is
collected by the system controller introduced in Section III
every second.

Quantities that need to be observed on shorter timescales,
such as the ASIC’s power consumption, are not considered to
be part of operational monitoring and rather available to users
directly within the experiment result structures.

This multi-level approach allows us to maintain high system
availability through early notifications in case of failures
and degradation. The collected data has proven vital for
understanding unexpected system behavior by allowing for
comparison to the past.

VI. LESSONS LEARNED

The presented system represents the current iteration of a
decade-long endeavor to provide a reliable platform for neu-
romorphic computing from within a university-based research
initiative. While their applicability to other environments may
vary, we nevertheless want to share lessons we have learned
during this process:

a) Strict resource management: BSS-2 systems can be
used concurrently by different users in an interleaved fashion,
with individual runtimes ranging from seconds to days. All
user-accessible devices must therefore be managed and any
interference with unallocated resources must be prevented
through automation. While malicious intent usually is not
part of our threat model, we have made the experience
that unintentional access can lead to significant disturbance
of system availability. We therefore integrate all available
hardware resources into the SLURM resource manager [20]
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Figure 4. CI/CD workflow for proposed changes to the BrainScaleS-2 software and hardware configuration. Developers upload their patches to a Gerrit
instance for code review [17]. Each upload triggers a build on a security-hardened Jenkins [18] instance with access to servers containing commercial EDA
tools. These run RTL simulations of the combined system and build a bitfile. Once the latter is available in binary form, a second Jenkins instance executes
downstream tests using this staging bitfile. To do so, it builds the BrainScaleS-2 software stack—including changes, the original patch might require—,
configures the staging bitfile on a test setup and executes the tests. The results will be propagated back to the original patch submitter and be available next to
human code-review comments.

and dynamically adjust firewall rules upon system allocation.
Without an active allocation, no package will be routed to the
respective system.

b) Independence of hardware resources: In line with the
strict resource management through software mentioned above,
hardware should be built in a way that two independent systems
cannot influence each other (e.g., through adjustments of a
shared power supply).

c) Network separation: While Ethernet has proven to be
a very robust protocol for our use case, unintended behavior of
a single device may stall operation through denial-of-service.
For such cases, sufficient bandwidth must be reserved for
management traffic to shut down the misbehaving device. While
separate physical networks are ideal for this purpose, they pose
significant financial and spatial constraints. We therefore utilize
queuing disciplines in our switch infrastructure to guarantee
minimum bandwidth allocations for specific VLANs.

d) Prefer Ethernet over USB: Previous iterations of
the BSS-2 platform utilized deep trees of USB devices for
managing the individual systems. Since then, we have migrated
to Ethernet where possible—specifically, for the SoC-based
system controller described in Section III—and also prefer
this protocol for new measurement equipment: In contrast
to USB, Ethernet poses fewer constraints on tree size and
-topology [21] and allows galvanic isolation between devices.
USB additionally requires a fixed pairing of devices to a single
host system, which in practice poses strong requirements on the
locality of nodes. Ethernet-based networking, on the contrary,
allows multiple—remote—hosts to access the same equipment
and thereby allows for fault-tolerance and load-balancing.

e) Monitoring with long retention periods: A reliable
monitoring infrastructure is crucial for any sustainable platform
operation. Here, we’d like to additionally highlight that reten-
tion periods of high-resolution data must be longer than it takes
users to notice typical fail cases. For the specific application
described in this manuscript, the intrinsic stochasticity of most
experiments can lead to multi-month periods in which users
accumulate errors until they report them.

f) Physical access control: Even in a university-based
context, physical access to production systems must be limited
to a small group of maintainers. While this statement itself
is trivial, it creates additional constraints on the system—

especially for research platforms: All functionality must be
controllable remotely, including controlled access to different
reset domains, power management and data acquisition.

VII. DISCUSSION

We have shown how we transformed a laboratory system
for exploring novel compute to a publicly available research
platform operated in an academic environment.

While we base our approach on data centers, the presented
implementation poses certain shortcomings: Most importantly,
we do not target high availability of the systems and therefore
omit redundancy for most power supplies and networking.
Especially with academic personnel—instead of dedicated
technical staff—operating the system, maintenance periods
may be elongated. The building itself does not come with a
continual power system, making the infrastructure susceptible
to power outages.

Other fields of novel computing have shown similar ap-
proaches of integrating laboratory systems into compute
cabinets [22]. While the CMOS-based compute substrate of
BSS-2 does not require similarly complex auxiliary compo-
nents, its acceleration factor still poses strong constraints on
network bandwidth and -latency. We therefore base our core
network infrastructure on 100 GbE. It allows—due to the strong
separation based on VLANs—the described hardware-enabled
CI/CD workflow to be executed on the production systems. The
infrastructure is prepared to accommodate additional scaled-up
systems in active development.

The presented neuromorphic platform—BrainScaleS-2—has
been publicly available since 2017, initially through the Human
Brain Project and later via the European research infrastructure
EBRAINS3. Together with its predecessor system, it was moved
to its current location in the EINC in 2023, with currently 13
systems in productive operation. Between January 2024 and
June 2025, more than 170 individual researchers conducted an
average of over 5 700 experiments per day.
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