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Nonlinear Self-Trapping of Matter Waves in Periodic Potentials
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We report the first experimental observation of nonlinear self-trapping of Bose-condensed 87Rb
atoms in a one dimensional waveguide with a superimposed deep periodic potential . The trapping
effect is confirmed directly by imaging the atomic spatial distribution. Increasing the nonlinearity
we move the system from the diffusive regime, characterized by an expansion of the condensate, to
the nonlinearity dominated self-trapping regime, where the initial expansion stops and the width
remains finite. The data are in quantitative agreement with the solutions of the corresponding
discrete nonlinear equation. Our results reveal that the effect of nonlinear self-trapping is of local
nature, and is closely related to the macroscopic self-trapping phenomenon already predicted for
double-well systems.
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The understanding of coherent transport of waves is es-
sential for many different fields in physics. In contrast to
the dynamics of non-interacting waves, which is concep-
tually simple, the situation can become extremely com-
plex as soon as interaction between the waves is of rel-
evance. Very intriguing and counter intuitive transport
phenomena arise in the presence of a periodic potential.
This is mainly due to the existence of spatially localized
stationary solutions.

In the following we will investigate the dynamics of
Bose-condensed 87Rb atoms in a deep one dimensional
periodic potential, i.e. the matter waves are spatially lo-
calized in each potential minimum (tight binding) and
are coupled via tunneling to their next neighbors. This
system is described as an array of coupled Boson Joseph-
son junctions [1]. The presence of nonlinearity drastically
changes the tunneling dynamics [2] leading to new local-
ization phenomena on a macroscopic scale such as dis-
crete solitons, i.e. coherent non-spreading wave packets,
and nonlinear self-trapping [3]. These phenomena have
also been studied in the field of nonlinear photon optics
where a periodic refractive index structure leads to an
array of wave guides, which are coupled via evanescent
waves [4].

In this letter we report on the first experimental confir-
mation of the theoretically predicted effect of nonlinear
self-trapping of matter waves in a periodic potential [3].
This effect describes the drastic change of the dynamics
of an expanding wave packet, when the nonlinearity i.e.
repulsive interaction energy, is increased above a critical
value. Here the counterintuitive situation arises that al-
though the spreading is expected to become faster due
to the higher nonlinear pressure, the wave packet stops

to expand after a short initial diffusive expansion. Since
we observe the dynamics in real space, we can directly
measure the wave packet width for different propagation

FIG. 1: Observation of nonlinear self-trapping of Bose-
condensed 87Rb atoms. The dynamics of the wave packet
width along the periodic potential is shown for two different
initial atom numbers. By increasing the number of atoms
from 2000±200(squares) to 5000±600(circles), the repulsive
atom-atom interaction leads to the stopping of the global ex-
pansion of the wave packet. The insets show that the wave
packet remains almost gaussian in the diffusive regime but
develops steep edges in the self-trapping regime. These edges
act as boundaries for the complex dynamics inside.

times. In Fig. 1 we show the experimental signature
of the transition from the diffusive to the self-trapping
regime. We prepare wave packets in a periodic potential
and change only the nonlinear energy by adjusting the
number of atoms in the wave packet close to (2000±200
atoms) and above (5000±600 atoms) the critical value.
Clearly both wave packets expand initially. At t ∼35 ms
the wave packet with higher initial atomic density has
developed steep edges and stops expanding (see inset in
Fig. 1). In contrast, the wave packet with the lower initial
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atomic density continues to expand keeping its gaussian
shape.

The coherent matter-wave packets are generated with
87Rb Bose-Einstein condensates realized in a crossed light
beam dipole trap (λ = 1064nm, 1/e2 waist 55µm, 600mW
per beam). Subsequently a periodic dipole potential
Vp = s · Er sin2(kx), realized with a far off-resonant
standing light wave (λ = 783nm) collinear with one of
the dipole trap beams is adiabatically ramped up . The
depth of the potential is proportional to the intensity of

the light wave and is given in recoil energies Er = h̄2k2

2m

with the wave vector k = 2π/λ. By switching off the
dipole trap beam perpendicular to the periodic potential
the atomic matter wave is released into a trap acting as a
one-dimensional waveguide Vdip = m

2 (ω2
⊥r

2 +ω2
‖x

2) with
radial trapping frequency ω⊥ = 2π · 230 Hz and longitu-
dinal trapping frequency ω‖ ≈ 2π ·1 Hz. The wave packet
evolution inside the combined potential of the waveguide
and the lattice is studied by taking absorption images of
the atomic density distribution after a variable time de-
lay. The density profiles n(x, t) along the waveguide are
obtained by integrating the absorption images over the
radial dimensions and allow the detailed investigation of
the wave packet shape dynamics with a spatial resolution
of 3µm.

In Fig. 2 the measured temporal evolution of the wave
packet prepared in the self-trapping regime (s = 10,
7.6(5) µm initial rms-width, 5000±600 atoms) is shown.
The evolution of the shape is divided into two character-
istic time intervals. Initially (t < 20 ms) the wave packet
expands and develops steep edges. This dynamics can
be understood in a simple way by considering that the
repulsive interaction leads to a broadening of the momen-
tum distribution and thus to a spreading in real space.
Since the matter waves propagate in a periodic poten-
tial the evolution is governed by the modified dispersion
(i.e. band structure) E(q) = −2K cos(dq) where d = λ/2
is the lattice spacing, h̄q is the quasimomentum and K
is the characteristic energy associated with the tunnel-
ing. The formation of steep edges is a consequence of the
population of higher quasimomenta around q = ±π/2d
where the dispersion is strongly reduced and the group
velocity is extremal. In order to populate quasimomenta
|q| > π/2d the initial interaction energy has to be higher
than the characteristic tunneling energy K and thus the
critical parameter depends on the ratio between the on-
site interaction energy and the tunneling energy as we
will discuss in detail. While in the linear evolution the
steep edges move with the extremal group velocity [5], in
the experiment reported here they stop after their for-
mation. As we will show this is a consequence of the
high atomic density gradient at the edge which suppresses
tunneling between neighboring wells. The further evolu-
tion is characterized by stationary edges acting as bound-
aries for the complex internal behavior of the wave packet
shape. The formation of the side peaks is an indication

that atoms moving outwards are piled up because they
cannot pass the steep edge. Finally the pronounced fea-
tures of the wave packet shape disappear and a square
shaped density distribution is formed.

FIG. 2: Comparison between theory and experiment for
s = 10, 7.6(5) µm initial rms-width, and 5000±600 atoms.
The upper graphs show the measured density distribution for
different propagation times. During the initial expansion in
the self-trapping regime the wave packet develops steep edges
which act as stationary boundaries for the subsequent inter-
nal dynamics. The results of the numerical integration of
eq. 2 (depicted in the lower graphs) are in very good agree-
ment. For t = 50 ms a 1.5 mrad deviation of the wave guides’s
horizontal orientation (consistent with the experimental un-
certainty) is taken into account and reproduces the experi-
mentally observed asymmetry (gray line).

In order to understand in detail the ongoing complex
self-trapping dynamics we compare quantitatively our ex-
perimental findings with numerically obtained solutions
(see Fig. 2). For our typical experimental parameters of
s ∼ 11 and ∼ 100 atoms per well we are in the regime
where the dynamics can be described by a macroscopic
wave function Ψ(~r, t) and thus by the Gross-Pitaevski
equation (GPE) [6]. Since we use deep optical lattices the
description can be reduced to a one dimensional discrete
nonlinear equation, which includes the fundamental pro-
cesses, namely tunneling between the wells and nonlinear
phase evolution due to the interaction of the atoms [3, 7].
In our experiment the trapping frequency in a single well
along the lattice period is on the order of ωx ≈ 2π · 25
kHz, whereas the transverse trapping frequency of the
wave guide is ω⊥ = 2π · 230 Hz. Thus our system can
be described as a horizontal pile of pancakes, and the
transverse degree of freedom cannot be neglected. In [7]
a one dimensional discrete nonlinear equation (DNL) is
derived which takes into account the adiabatic change
of the wave function in the transverse direction due to
the atom-atom interaction. A generalized tight binding
ansatz

Ψ(~r, t) =
∑

j

ψj(t)Φj(~r,Nj(t)) (1)

is used, with ψj(t) =
√

Nj(t)e
iφj(t), where Nj(t) is the

atom number and φj(t) is the phase of the jth con-
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densate. Φj is normalized to 1 (i.e.
∫

d~rΦ2
j = 1) and

Ψ(~r, t) is normalized to the total number of atoms NT

(i.e.
∑

j |ψj |2 = NT ). The spatial real wave function
Φj(~r,Nj(t)) is centered at the minimum of the j-th well
and is time dependent throughN(t). Integrating over the
spatial degrees of freedom, the following DNL is obtained
from the GPE :

ih̄
∂ψj

∂t
= ǫjψj −K(ψj+1 + ψj−1) + µloc

j ψj . (2)

K is the characteristic tunneling energy between ad-
jacent sites. ǫj =

∫

d~rm
2 ω

2
‖x

2Φ2
j is the on-site en-

ergy resulting from the longitudinal trapping potential,
which is negligible in the description of our experi-
ment. The relevant chemical potential is given by µloc

j =
∫

d~r
[

m
2 ω

2
⊥r

2Φ2
j + g0|ψj(t)|2Φ4

j

]

with g0 = 4πh̄2a/m (a
is the scattering length). It can be calculated ap-
proximately for our experimental situation assuming a
parabolic shape in transverse direction (Thomas-Fermi
approximation) and a Gaussian shape in longitudinal di-
rection for Φj(~r,Nj(t)) (ωx ≫ µloc

j /h̄ > ω⊥). This leads

to µloc
j = U1|ψj(t)| with

U1 =

√

mω2
⊥g0√

2ππσx

. (3)

Here σx = λ/(2πs
1

4 ) is the longitudinal Gaussian width
of Φj in harmonic approximation of the periodic potential
minima. Please note, that if the local wave function Φj

does not dependent onNj eq. 2 reduces to the well known
discrete nonlinear Schrödinger equation with µloc

j ∝ Nj

[3, 8].
We compare the experimental and numerical results

in Fig. 2 and find very good agreement. The theory
reproduces the observed features such as steepening of
the edges, the formation of the side peaks and the fi-
nal square wave packet shape. It is important to note
that all parameters entering the theory (initial width,
atom number, periodic potential depth and transverse
trapping frequency) have been measured independently.
The observed asymmetry of the wave packet shapes (e.g.
see Fig. 2, t = 50ms) appears due to the deviation
from the perfect horizontal orientation of the wave guide
(±2mrad) which results from small changes in height of
the pneumatic isolators of the optical table during the
measurements.

In the following we will use the numerical results to
get further insight into the self-trapping dynamics. We
investigate the local tunneling dynamics and phase evo-
lution by evaluating the relative atom number difference
∆Nj = (Nj+1 − Nj)/(Nj+1 + Nj) and the phase differ-
ence ∆φj = φj+1 − φj between two neighboring sites. In
Fig. 3a) the wave packet shapes for t = 0 and t = 50ms
are shown. In Fig. 3b) we plot the relative atom number
difference ∆Nj averaged over the whole propagation du-
ration of 50ms. The graph indicates two spatial regions

FIG. 3: A numerical investigation of the site to site tunneling
dynamics. (a) The atomic distribution Nj of the wave packet
for t = 0 and 50 ms. (b) The relative population difference
∆Nj time averaged over the expansion time indicates two re-
gions with different dynamics. (c) The dynamics of ∆Nj and
the phase difference ∆φj for the marked site oscillate around
zero known as the zero-phase mode of the Boson Josephson
junction. (d) The dynamics in the edge region is character-
ized by long time periods where |∆Nj | is close to 1 while at
the same time ∆φj winds up very quickly (phase is plotted
modulo π) known as ’running phase self-trapping mode’ in
Boson Josephson junctions. Thus the expansion of the wave
packet is stopped due to the inhibited site to site tunneling
at the edge of the wave packet.

with different characteristic dynamics. While the aver-
age vanishes in the central region (shaded in light gray)
it has significant amplitude in the edge region (shaded
in dark gray). The characteristic dynamics of ∆Nj and
∆φj in the central region is depicted in Fig. 3c). The
atom number difference as well as the phase difference
oscillate around zero. This behavior is known in the con-
text of BEC in double-well potentials. It is described as
the Boson Josephson junction ’zero-phase mode’ [2] and
is characteristic for superfluid tunneling dynamics if the
atom number difference stays below a critical value. At
the edge in contrast, ∆Nj crosses the critical value during
the initial expansion (steep density edge) and locks for
long time periods to high absolute values showing that
the tunneling and thus the transport is inhibited. At the
same time the phase difference winds up. This charac-
teristic dynamics has been predicted within the Boson
Josephson junction model for a double-well system and
is referred to as the ’running phase self-trapping mode’
[2]. This analysis makes clear that the effect of nonlinear
self-trapping as observed in our experiment is a local ef-
fect and is closely related to Boson Josephson junctions
dynamics in a double-well system.

Although the local dynamics just described is very
complex, the evolution of the root mean square width
of the wave packet, i.e. the global dynamics, can be pre-
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dicted analytically within a very simple model. In [3]
a Gaussian profile wave packet ψj(t) ∝ exp(−( j

γ(t))
2 +

i δ(t)
2 j2) parameterized by the width γ(t) (in lattice units)

and the quadratic spatial phase δ(t), is used as an ansatz
for quasimomentum q = 0 to solve the discrete nonlinear
Schrödinger equation. The time evolution of the width
γ(t) is obtained analytically applying a variational prin-
ciple. The result of this simple model is, that the dy-
namics of the wave packet width is solely determined by
two global parameters - the density of the atoms and the
depth of the periodic potential. Also a critical parameter
Λ/Λc can be deduced, which governs the transition from
the diffusive to the self-trapping regime. The transition
parameter Λ/Λc for the 2D case described by eq. 2 is
obtained following the same lines of calculation as in [3].
Assuming that the initial width γ0 ≫ 1 (in the experi-
ment typically γ0 ≈40) we obtain

Λ =
U1

√
NT

2K
and Λc =

3

2

(

9π

8

)
1

4 √
γ0.

A surprising result of this model is the prediction of the
following scaling behavior (shown in Fig. 4):

γ0

γ∞
=

√

1 − Λc

Λ
(4)

for Λ/Λc > 1, where γ∞ is the width of the wave packet
for t → ∞. For Λ/Λc < 1 the width is not bound and
thus the system is in the diffusive regime. In the regime
Λ/Λc > 1 the width is constant after an initial expansion
(see inset Fig. 4). Since Λ/Λc ∝ µloc

av /K, the self-trapping
regime is reached by either reducing the initial width,
increasing the height of the periodic potential or, as is
shown in Fig. 1, by increasing the number of atoms.

Scaling means that all data points (i.e. different ex-
perimental settings with the same Λ/Λc) collapse onto a
single universal curve. In order to confirm the scaling be-
havior experimentally we measure the width of the wave
packet after 50ms evolution for different system parame-
ters, i.e. atom number, initial width of the wave packet,
and depth of the periodic potential. The experimental
results shown in Fig. 4 confirm the universal scaling de-
pendence on Λ/Λc and follow qualitatively the prediction
of the simple model. The dashed line in Fig. 4 is the re-
sult of the numerical integration of the discrete nonlinear
equation given in eq. 2 evaluated at t =50ms. It shows
quantitative agreement with the experiment. The dif-
ference between the numerical (gray line) and analytical
calculation (solid line) is due to the initial non-gaussian
shape (numerically obtained ground state) and the strong
deviation from the gaussian shape for long propagation
times.

Concluding we have demonstrated for the first time
the predicted effect of nonlinear self trapping of Bose-
Einstein condensates in deep periodic potentials. The

FIG. 4: Experimental investigation of the scaling behavior.
The solid line shows the curve given by eq. 4. Experimentally
the parameter Λ/Λc was varied by using three different peri-
odic potential depths: s = 10.6(3) (stars), 11.1(3) (squares)
and 11.5(3) (diamonds). For each potential depth wave pack-
ets with different atom numbers and initial widths are pre-
pared and the width for t = 50 ms is determined. The experi-
mental data show qualitatively the scaling behavior predicted
by eq. 4 and are in quantitative agreement with the results of
the numerical integration of the DNL (gray line). The inset
depicts the nature of the scaling: increasing Λ/Λc (by e.g.
increasing the atom number) leads to a faster trapping and
thus to a smaller final width.

detailed analysis shows that this is a local effect, which
occurs due to nonlinearity induced inhibition of site to
site tunneling at the edge of the wave packet. This be-
havior is closely connected to the phenomenon of macro-
scopic self trapping known in the context of double-well
systems. Furthermore we quantitatively confirm in our
experiments the predicted critical parameter which dis-
criminates between diffusive and self trapping behavior.
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