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We consider the stability and dynamics of multiple darktsol$ in cigar-shaped Bose-Einstein condensates
(BECs). Our study is motivated by the fact that multiple matvave dark solitons may naturally form in such
settings as per our recent work [Phys. Rev. L&81, 130401 (2008)]. First, we study the dark soliton inter-
actions and show that the dynamics of well-separated sslifice., ones that undergo a collision with relatively
low velocities) can be analyzed by means of particle-likeagigns of motion. The latter take into regard the
repulsion between solitons (via an effective repulsiveeptiél) and the confinement and dimensionality of the
system (via an effective parabolic trap for each solitor@xtNbased on the fact that stationary, well-separated
dark multi-soliton states emerge as a nonlinear contionaif the appropriate excited eigensates of the quan-
tum harmonic oscillator, we use a Bogoliubov-de Gennesyaisalo systematically study the stability of such
structures. We find that for a sufficiently large number ofv@pmultiple soliton states may be dynamically
stable, while for a small number of atoms, we predict a dyeahinstability emerging from resonance effects
between the eigenfrequencies of the soliton modes and thiesic excitation frequencies of the condensate.
Finally we present experimental realizations of multitenl states including a three-soliton state consisting of
two solitons oscillating around a stationary one.

PACS numbers:

. INTRODUCTION

Dark solitons, namely localized density dips on top of alstabntinuous-wave background (or a background of finiteretxt
with a phase jump across their density minimum, are fundaahenvelope solitons supported in nonlinear dispersivdime
These nonlinear waves emerge in media with a positive (ivejagroup-velocity dispersion and defocusing (focusinglin-
earity, with a proper model describing their evolution lggihe so-called defocusing nonlinear Schrodinger (NL$)péign [1].
Dark solitons have been studied extensively in the field aflinear optics (from which the term “dark” was coined) [2Utb
they have also been observed in diverse physical contextading liquids|[3], mechanical systems [4], magnetic §l[&], and
So on.

More recently, dark solitons have attracted much atteritidhe physics of Bose-Einstein condensates (BECS) [6, ligres
they appear as fundamental macroscopic nonlinear extitatif BECs with repulsive interatomic interactions|[8, %9.is,
therefore, not surprising that experimental worknoatter-wave dark solitorstarted as early as ten years ego [10} 11, 12, 13, 14]
and, very recently, continued even more intensively [15/116 18, 19]. These important “new age” experiments hiditiéd
various salient features of dark solitons, verified presitheoretical predictions and offered motivation for fertivestigations.

A pertinent example is the creation of more than one mattrevwdark solitons [17, 18] (see also Ref.|[15]) in cigar-gthp
condensates, which were allowed to interact. This inviteevisiting of the topic of dark solitons and especially oéith
interactions in the particular context of BECs; the lattas la number of particularities including e.g., the confinentieat is
routinely used to trap and cool the atomic clouad [6, 7].

Multiple dark soliton solutions of the defocusing NLS edoatwere first obtained in Ref.L|[1] by means of the inverse
scattering method. Later, an analytical form of a solutibthe NLS equation composed of two dark solitons of diffeidepths
and velocities was found [20] (see also the more recent W@ks22]), and it was shown that the interaction between dark
solitons is repulsive. Subsequent theoretical studiegsiedt on the interactions and collisions of dark solitonsha dontext
of nonlinear optics/[23, 24, 25] and later in BECs|[26], whitdevant experimental results (see Refs.| [27] for opticakd
solitons andl[14, 17] for atomic dark solitons) also exarditie interaction between two dark solitons. However, foitg the
recent experimental methodology of Ref. |[18], it is in piple possible to generate multiple (in fact, in principle,abitrary
number of) dark solitons: this can be done by releasing a BB@ fa double-well potential into a harmonic trap within the
experimentally accessible, so-called, dimensionalibgssover regime between one-dimension (1D) and three-dimen(3D)
[18]. In such a case, it is clear that a study of multiple nrattave dark solitons, and their interactions, should bégoered in
a theoretical framework that takes into regard basic feataf the pertinent experiment, such as the effect of dineatity and
the corresponding effective confinement of the condensate.

In this work, our scope is to analyze this problem, namelydtiaics and dynamics of multiple matter-wave dark solitons
in cigar-shaped condensates. Based on the fact that reioenicadark soliton experiments were performed at extrertwiy
temperatures and with sufficiently large number of atomsmag safely adopt a mean-field theoretical approach. Inqudati,
we will perform our analysis in the framework of the effeeliy 1D Gross-Pitaevskii (GP) equation with a non-cubic maedrity
that was first presented in Ref. [28] and later was also deavel tested in Refs. [29] [this is a distinguishing featdrews work
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with respect to most of the above references which congid#aek soliton interactions in the standard homogeneowsdsing
cubic NLS setting]. Our analysis starts by considering teaginics of multiple dark solitons which is studied as foltowrirst,
we consider the weakly-interacting limit of the non-cubie &quation (namely the traditional defocusing NLS modet), &m
the absence of the trap, we derive an effective repulsivenpial for the interaction between two solitons. It is shawat this
potential can successfully be used to describe the interechetween “low-speed” solitons (with velocities lesarththe half of
the speed of sound). Such solitons are, “well-separatetiéisense that they always can be identified as distingusbhfects,
even at the collision point. Then, using this potential, séain a set of equations of motion for the coordinates of aitrary
number of solitons. Our approach, is finally applied to tHedtoblem under consideration (with the non-cubic nordirisy and
the external harmonic trap), upon incorporating an effedtiarmonic potential with a corresponding characterfstiguency:
this is actually the eigenfrequency of the first anomalouslienof the system [7], corresponding to the oscillation fiesgry
of a single dark soliton in the trap (see relevant resultseéfsR[30] and|[31] for the purely-1D and dimensionality-ssover
regimes). Such aad hocdecomposition of the principal physical mechanisms affigahe solitons was first introduced in Ref.
[18] (for the case of two symmetrically interacting darkismis), and will be validated posterioriherein, by means of direct
numerical simulations.

The above methodology for the study of multiple atomic daktens is directly connected to the Bogoliubov-de Gennes
(BdG) spectrum of excitations of stationary dark solitcates. The latter are obtained when linearizing around timéinear
counterparts of the respective linear states (correspgrdithe eigenmodes of the quantum harmonic oscillgtol])d84 their
properties are studied by means of the well-known BdG equoslii7]. Such an analysis reveals that the spectrum ofiitie
excited state consists of one zero eigenvatudpuble eigenvalues (accounted for by the presence of thmdmac trap), and
infinitely many simple ones. In the nonlinear regime, ondefeigenvalues of each double pair possesses a topologipairpy
of, so-called negative energyin the physical literature) [33] anegative Krein signaturén the mathematical literature) [34];
practically, this means that it becomes structurally usistd.e., it becomes complex, upon collision with otheegigplues. The
eigenvalues with negative Krein signature are actuallg@ased with the anomalous modes [7] appearing in the BdGtgpa.

In our case of multiple dark solitons, the number of anomalmoedes in the excitation spectrum equals to the number &f dar
solitons [35], which is in agreement with the fact that thentner of eigenvalues with negative Krein signature equatbeo
number of the nodes of the stationary state [36]. More gdigevee conjecture (based on the results below for the cages o
two- and three-solitons) that in the case ofradark soliton sequence (pertinent tosaith order nonlinear state), the anomalous
modes of the system correspond to the excitation of the narmodes of the “dark-soliton lattice”.

The paper is organized as follows. In section Il we presentibdel and make some general remarks on the theoreticpl setu
Section lll is devoted to the dynamics of multiple solitoihs particular, first we analyze the homogeneous weakly-atting
case, and derive the effective repulsive potential for telitans undergoing a symmetric collision. Then, we geneeahese
results to include the cases of asymmetric collisions anitipleisolitons, as well as to tackle the full problem, takinto regard
the external harmonic trap and the dimensionality of thedeoisate. In section IV we study the stability of the statigmaulti-
soliton states via a BdG analysis. We analyze, in partictiter pertinent Bogoliubov spectra, paying special atentd the
anomalous modes of the system. We illustrate how these doosvmodes correspond to "normal modes” of the “dark-sofito
lattice”, e.g., in-phase and out-of-phase oscillatingkadaliton states. We also predict the onset of dynamicahbikties due to
resonance between the eigenfrequencies of these normabrand the excitation frequencies of the background coatkerid/e
illustrate under what conditions such instabilities maybeerved in future experiments. In Section V we presentréxeatal
realizations of multi-soliton states including a threditea state consisting of two solitons oscillating arounstationary one.
Section VI concludes the paper, summarizing our findingspadenting some directions of future study.

Il. THE MODEL AND THEORETICAL SETUP

We consider a BEC confined in a highly elongated trap, witlgitadinal and transverse confining frequencies (denoted by
w, andw , respectively) such that, < w, . In this case, it can be found [28,/29] that use of the adiatzgiproximation, in
combination with a variational approach for determininglttcal transverse chemical potential, leads to the foligveffectively
1D GP equation,

oy [ m o .
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wherev(z,t) is the longitudinal part of the condensate’s wave functionmmalized to the number of atoms, i.€V, =

f;o |y|2dzx, o is the s-wave scattering lengthy is the atomic mass, ant..;(z) is the longitudinal part of the external

trapping potential, assumed to take the standard harmonit ¥, (z) = (1/2)mw?z?. As demonstrated in Refs. [29], Eq.
(@) provides accurate results in the dimensionality cressand the Thomas-Fermi limit, thus describing the axialadyics of
cigar-shaped BECs in a very good approximation to the 3D $SRiaevskii (GP) equation. Notice that in the weakly-iatting
limit, 4a|y|? < 1, Eq. [@) is reduced to the usual 1D GP equation with a cubidimesrity, characterized by an effective 1D



coupling constany; p = 2ahw . Equation[(lL) can be expressed in the following dimensi&sierm,
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whereQ) = w, /w, is the normalized trap strength. In Ef] (2), the density is measured in units &fa NV, while length, time

and energy are measured, respectively, in units of theweass harmonic oscillator length, = /A/mw ., w ", andhiw, .
Exact analytical dark soliton solutions of E@J (2) are natilable. However, following the lines of Rei. [37] where a SIL

equation with a generalized defocusing nonlinearity wassitered, dark soliton solutions can be found in an implgin (via

a phase-plane analysis) or in an approximate form (via trelsamplitude approximation). On the other hand, exactyical

dark soliton solutions are available in the above mentiomedkly-interacting limit 2|:/|> < 1), and in the absence of the

external potential, i.e., for the cubically nonlinear d=fsing NLS model. A single dark soliton solution on top of akground

with constant density = ng = u (with 1 being the chemical potential) has the form [1],

¥(z,t) = v/ng [iv + B tanh(n)] exp(—iput), 3)

wheren = \/ngB(z — \/novt), the parameteB = /1 — 12 sets the soliton depth,/noB, while the parameter sets the
soliton velocity,,/ngv. Note that forr = 0 the dark soliton becomes a stationary kink (alias “blackitsn), while forv =1
the dark soliton solutiod {3) becomes the background soiutMultiple dark soliton solutions are also available [@,[21]. In
the simplest case of a two-soliton solution, with the twateak moving with equal velocities; = —v» = v, the wave function
can be expressed as [21] (see also [22]):

F(z,t)
G(z,t)

P(z,t) = exp(—iput), 4)
whereF = 2(ng—2nmin) cosh(T') —2ngv cosh(Z)+isinh(T"), G = 2,/ng cosh(T") +2/Mmin cosh(Z), while Z = 2,/ng Bz,

T = 2v/Nmin(no — Nmin)t, @NANi, = ng — ngB? = nov? is the minimum density (i.e., the density at the center oheac
soliton). This equation will be useful for the analysis ofldaoliton interactions (see next section).

Generally, the single dark soliton, as well as all highetesdark soliton states, can be obtained in a stationary fam the
non-interacting(linear) limit of Eq. [2), corresponding t% — 0. In this case, Eq.]2 is reduced to a linear Schrodinger amuat
for a confined single-particle state, and this problem bexthe equation for the quantum harmonic oscillator; therais
characterized by discrete energy levels and correspoidiadized eigenmodes described by the Hermite-Gauss poliais
[38]. Then, in theweakly-interactingcase, where Eq[2) becomes the cubic NLS equation, all tigeemodes exist for the
nonlinear problem as well [32], describing an analyticaitgmuation of the linear modes to a set of nonlinear statipstates.
Additionally, recent analysis and numerical results [38jgest that there are no solutions of Hq. (2) without a liceanterpart.

In fact, the effect of interactions (i.e., the effect of nophrity) transforms all higher-order stationary modés ensequence of
parabolically confined dark solitons [32]. From the phykient of view, the higher-order stationary modes exist tiughe fact
that the repulsion between dark solitons [20,(21, 23| 24j28bunter-balanced by the restoring force induced by #ygping
potential.

Below, we are going to analyze the stability of nonlinear e@¢thamely stationary multi-dark-soliton states) of Hg. b2
means of the BdG equations. In particular, first we identifyuenerically exact (up to a prescribed tolerance), statipsaliton
state,yps(x), using a fixed point algorithm (e.g., a Newton-Raphson math@hen, considering small perturbations of this
state of the form,

iz 1) = [vs(2) + (u(z)e ™ + v (2)e ) [ e, (5)

(wherex denotes complex conjugate), we derive from [E§). (2) the fullg BAG equations:
[H — i+ flu+gv = wu, (6)
[H — pi+ flo+ gu = —wu, (7)

whereH = —(1/2)0% + (1/2)92222 is the single particle operatqt, is the chemical potential and the functiofsindg are
given by f = g + /1 + 4dnps, andg = 2¢34/+/1 + dnps (With nps = |¢ps|?). Then, solving Eqs[{6J-[7), we are going to
find the eigenfrequencies = w, + iw; and the amplitudes andwv of the normal modes of the system. Note that due to the
Hamiltonian nature of the system fis an eigenfrequency of the Bogoliubov spectrum, so-arew* and—w*. Notice that a
linearly stable configuration is tantamountip= 0, i.e., all eigenfrequencies being real.

The stability of nonlinear modes has already been congiderseveral works [40, 41, 42] in the framework of the 1D GP
equation. According to Refl_[40] stable nonlinear modestekiut results of Refl [42], obtained near the non-inténgdimit,
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appear to contradict those of Ref. [40]. In fact, in Refl [48as claimed that, apart from the first one, all higher-oramlinear
modes are unstable for repulsive BECs (but can be stabitigesing anharmonic traps). The mechanism of this instgtaiéin
be interpreted as follows: in the non-interacting (lindanjt, the excitation spectrum of the-th mode possessesequidistant
(due to the harmonic trap) double eigenvalues. Then, pagsio the nonlinear interacting regime, the negative epefgne
member of each of these double eigenfrequency pairs patigtleads to structural instability, i.e., each pair arglapposite
split into a complex quartet of eigenfrequencies.

Below we will show that the above mentioned instability oftmér-order nonlinear modes occurs near the non-intetactin
limit, but will cease to exist sufficiently deep inside thentinear regime (i.e., for sufficiently large condensatethviarge
numbers of atom4). In fact, considering both the second- and the third-ondelinear mode of Eq[12), we will demonstrate
that they are initially (i.e., for a small number of atomsffisiently close to the linear limit) linearly unstable. Natheless,
numerical continuation of the corresponding waveformsatgér values ofV, reveals a critical value of the number of atoms
(depending on the anisotropy of the external harmonic trdpgh, if exceeded, all the eigenfrequencies become rehlthos,
the nonlinear stationary state becomes linearly stable.

Ill. DYNAMICS OF MULTIPLE DARK SOLITONS
A. Multiple soliton interactions — The homogeneous case

Let us consider, at first, the simplest possible multi-ealistate, namely a pair of dark solitons located at +z,, and
moving with opposite velocities, i.e; = —v5 = v. Then, in the framework of the weakly-interacting limit off EZ) (and in
the absence of an external potential), we may derive an iequat the trajectory of the soliton coordinatg, as a function of
time. This can be done upon identifying the soliton coortéiress the location of the minimum density, and using the éguat
Oly|?/0z = 0, with (2, ) given in Eq. [#), to obtain the result:

n, Nmin, 1
cosh(2y/ngBzo) = 4/ - 9 cosh(T') — 24/ no cosh(T) (8)

(recall thatl = 24/nmin(n0 — nmin)t). Then, Eq. [(B) can be used for the determination of the migtaz; between the two
solitons at the point of their closest proximity (corresgimg tot = 0):

* 1 —1 no Nmin
= gt (o ). ©

This equation shows that the closest proximity distanceies zero forn.,;,/ng = v?> = 1/4. Physically, this means that
there exists a critical value of the soliton velocity, naynel = 1/2, which separates two different regimes: in the first regime,
“high-speed” solitons withy > v, aretransmittedthrough each other [their high kinetic energy overcomesdriterparticle
repulsion], while in the second regime, “low-speed” solgavithr < v, arereflectedby each other [their lower kinetic energy
in this regime is insufficient to overcome the interparti@pulsion]. In fact, as seen in the panels of Ei. 1, the wawetfon
of the low-speed (high-speed) solitons exhibits two separanima (a single non-zero minimum) at the collision ppiramely
[Y(z5,t = 0)2 = 0 (|v(25,t = 0)]* # 0). Note that in the case of the critical velocity = 1/2, the two-soliton wave
function exhibits a single zero minimum at the collisionmgoiThe above analysis underscores the fact that low-spsitdns
are actually “well-separated” solitons, in the sense they tan always be characterized by two individual densityimmé even
at the collision point (the point of their closest proximityOn the contrary, the high-speed solitons completely lapeat the
collision point and, thus, are not distinguishable durmg¢ollision. Thus, well-separated solitons appear to fheated by each
other and can safely be regarded as hard-sphere-likelpartiat interact through an effective repulsive poterféitihough, as
we will see quantitatively, the description below will begusingly accurate even in the non-well-separated case).

To further elaborate on the above, let us consider the ligitase of extremely slow solitons, namely/n.,;, = v? < 1/4,
for which the soliton separation is large for every time,, itee closest proximity distance i§ > 0. In this case, the second
term in the right-hand side of EQI(8) is much smaller tharfitlse one for every time (including= 0) and can be ignored. This
way, the soliton coordinate can be expressed as:

1 —1p, -1
=5 —5 cosh™ [v~! cosh(2novBt)] , (10)
which yields the soliton velocities:
dz sinh(2ngv Bt
dt() _ \/n—o ( 0 ) (11)

\/1/*1 cosh?(2ngvBt) — 1
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FIG. 1: Top panels: Soliton trajectories for symmetric teaditon collisions for different initial velocitiess = 0.2 (left) andv = 0.8 (right).
In the former (latter) case the solitons are reflected byéimitted through) each other. Bottom panels: Soliton ¢tajées for an asymmetric
two-soliton collision for initial velocities/; = 0.5 andv, = 0 (left), and for a three-soliton collision for initial velties v, = —v3 = 0.4
andv, = 0 (right). In all panels, shown are density plots of the wavecfion carrying the solitons as obtained by direct numéimtagration
of the homogeneous NLS equation. The solid lines correspwitte solution of Eq.[{14) (i.e., employing the effectivéeiraction potential).
In all cases the normalized chemical potentiglis- 1.

The above equation shows that in the litit oo, the soliton velocities take the asymptotic valdeg/dt = +,/nov, namely
the values of the velocities of each individual soliton [gee definition of the single soliton velocity beneath HJ.].(®)n the
other hand, at = 0, Eq. [11) yieldsizo/dt = 0; this means that as the dark solitons are approaching ebeh tiey become
slower, i.e., darker, and at= 0 (corresponding to the point of their closest proximity)yheecome black, remaining at some
distance away from each other. After such a, so-called,-bedtblack collision” [26], the dark solitons are reflecteg éach
other and continue their motion in opposite directions.

We now proceed to determine the effective repulsive pakfdr well-separated dark solitons. This can be done byrdete
mining, at first, an equation of motion for the soliton cooate: differentiating Eq[{10) twice with respect to timedaising
Eq. (8) (without the second term, which is negligible for lasdparated solitons), we obtain the equation of motiohnform
d%zy/dt? = —0V (z9) /00, With the repulsive potential being given by:

2
V(zo0) = l# (12)
2 sinh*(2\/noBzo)

It is worth noting here that sincB = /1 — v2, the above potential is, in principle, a velocity depenaerd. Note that Eq[(12)
recovers the result obtained in Ref. [[25] by means of a Lagjeanapproach (in that work, thénh term in the denominator
appears as @sh term due to a typographical error [43]).

Although the potential of Eq[{12) is formally applicablelpto symmetric collisions, it can nevertheless be applisd &
the case of non-symmetric collisions provided that an “agerdepth” of the two solitons is employed. In fact, it is polses



to generalize this concept for an arbitrary number of sofitm: assuming that theé-th soliton (withi = 1,2,--- ,n) is
characterized by a darkneBs, velocityr; = /1 — B, and a position;, we may define the average de@hy = (1/2)(B; +
B;) and the relative coordinatg; = (1/2)(z; — z;) for solitonsi and;, and express the interaction poteniiain the presence
of other solitons, as:

2
no B ij

Vi = : .
; 2 sth[,/noBij (Zz — ZJ)]

(13)

Notice that Eq.[(T13) is reduced to Ef.112) for= —v; = v (i.e., forB; = B; = B) andz; — z; = 2z.

Using Eq. [(IB), it is now straightforward to obtain equasi@i motion for a “lattice” consisting of an arbitrary numkr
dark solitons. Taking into regard that the Lagrangiaof n interacting solitons i€ = 7' — V, whereT' = " | (1/2)2;* (with
z; = dz;/dt)yandV = " _| V; are the kinetic and potential energy, respectively, theEuagrange equationd(d;, L) /dt —
0., L = 0, lead to the following set of dynamical evolution equations

. o[ 0V 0V oV

Thesen coupled equations of motion can then be used to calculategjeetories; (¢) of n-interacting dark solitons. It is worth
pointing out here that in deriving Eq§.{14), we have attedpo incorporate the character of the solitary waves astdeible
particles” with a velocity-dependentinteraction potehfef. Eq. [12) and related discussion). This approxinmatidl be tested
a posteriori through the detailed comparison of the pariidsed and the GP-based dynamical results.

We have performed systematic numerical simulations tosiiyate the range of validity of Eqs[{14), both for cases of
symmetric and asymmetric soliton colisions, as well as bmthases of low-speed (well-separated) and high-sped&ddétons.
Various relevant examples are shown in [Elg. 1. The simulat@amnfirm that as long as the dark solitons are well-sephfaim
each other, i.e., if their depth (velocities) is (are) sigfitly large (small), their trajectories found by means qfE{14) almost
coincide with the ones found by direct numerical integratibthe NLS equation. This excellent agreement can berifitest not
only qualitatively but also quantitatively: this can be darpon comparing the exact results for the collision-indystease-shifts
of the soliton trajectories to the ones found numericallynians of Eq.[(14). In the case of two solitons, these phafts-sh
were calculated analytically in Ref./[1] and have the foliogvform,

1 )+ (Bt By)?
2B, (1/1 - 1/2)2 + (B1 - 32)27
1 (Vl - V2)2 + (Bl + 32)2

0zg = —=—1 . 16
2 2B2 n (Vl — V2)2 + (Bl — BQ)Q ( )

521 = (15)

In Fig. [2 we compare the exact phase-shifts provided by tlgabxpressions to the ones determined by means of [EY. (14),
which employ the effective repulsive potential of ElQ.]1(1Bhth cases of a symmetric (top panels) and an asymmetritothot
left panel) collision are shown; it is clearly observed tthet agreement between the two approaches is very good ftorsol
velocitiesy < 1/2, i.e., for well-separated dark solitons. Notice that in thse of an asymmetric collision; # vs, the two
shifts are not equa|fzi1| # |022|, while in the case of a symmetric collisiom, = —v» = v (and, thus,B; = B, = B), the
phase shifts become equillz; | = [022| = (2B) ' In(1 + B?/1?).

B. Dynamics and interactions of multiple solitons in the trgo

The above analysis of soliton interactions in the homogesease is of use in the inhomogeneous case as well. In garticu
here we will consider multiple dark solitons in the preseatan harmonic trap, also taking into regard that the conakens
is cigar-shaped, so that the proper model is [Et|. (2) (ratiar its weakly-interacting limiting case, i.e., the ususbic NLS
equation considered above). In such an experimentallyaetesituation, we may employ the theoretical approach tedbin
Ref. [18] and use an interaction potential for dark solitohthe form:

VAT = Vil (i) + Ve, 20), (17)

exrt

whereV;(z;, ;) is the interaction potential of EJ._{13) and the effectiapping potentiai/;ﬁf is given by:

Vel (z) = le 22, (18)

ext 2 osc”i
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FIG. 2: Collision-induced phase-shift of the solitons asiiaction of the velocity. Solid lines depict the analytical result of Eqs.J(15)}(16)
and the dashed lines show the results obtained fronTEh. Whdgh employs the effective repulsive potential. The agrest between the two
approaches is very good for well-separated solitonsfaer; < 1/2. The left panel shows the case of a symmetric collision, hadight one
the case of an asymmetric collision of a moving soliton wite- v1 and a stationary soliton (i.e., a black soliton with= 0 — see bottom
left panel of Fig[1). The dashed vertical line depicts thgoal valuer = 1/2 and defines the range of applicability of the approach based o
the effective repulsive potential.

The underlying assumption within this decomposition i therk soliton is an effective particle moving under the camed
influence of external forces from the confining potential mwdn the other solitons within the configuration. Each ofsthe
individual forces has an associated potential and hendethlkforce and associated motion stem from the combinatidnese
potentials. A more subtle assumption is that while the éftédimensionality on a single soliton is captured in thesefive
oscillation frequencw,. discussed in detail in the next paragraph, the tail-taérmttion of the waves is well approximated
by its NLS counterpart. These assumptions will be validaqmbsteriori through our comparisons between theoretiwdl a
numerical results below.

Here,w,s. is the oscillation frequency of a single dark soliton in tlaerhonic trap, which coincides with the lowest anomalous
mode of the system [31]. In the purely 1D regime, and for sigifity large number of atoms (i.e., in the so-called ThorResni
regime [6) 7]) the soliton oscillation frequency.s,. = ©/+/2, whereQ is the normalized trap strength. This can be derived
either by analyzing the dynamics of the dark soliton in tlet(see, e.g., [9] and references therein) or by means of a BdG
analysis|[30]. In the case of cigar-shaped BECs under cerwidn, the oscillation frequency is upshifted [31] aneinerally,
takes values in the intervé]/\/i < Wese < L.

Based on the above discussion, the interaction potenti&gof (I8) takes into account both the effective harmonic trap
(including the dimensionality of the system) !/ (z;), and the inter-soliton interaction potentiaf,(z;, %;) (derived for the
homogeneous 1D regime). This potential has already beamssftilly used in Ref! [18], where the experimental findifogs
the symmetric collisions between two dark solitons werentbto be in excellent agreement with the corresponding iwai
results. Here, we will show that the approach based on thefuse effective potential of Eq[_(17) can also be generdlire
the case of asymmetric collisions. Such a case can also bstigated experimentally in the context of the experimesgaup
of [18]. In particular, in[[13] an even number of dark solisowas created by merging two condensates initially prepared
double-well trap, with a zero-phase difference betweemthia principle, it is also easy to create an odd nhumber oteudi,
upon introducing a non-zero phase difference between ttis,wmeéhich would lead to an asymmetric evolution patterntaf t
solitary waves. If, furthermore, the phase difference emsotly equal tar, then a stationary (black) dark soliton is created exactly
at the center of the harmonic trap. In fact, this procedussdir@ady been used in relevant interference experimeoislifrectly
connected, however, to dark solitons)|[45].

In Fig. [3 we show an example of an asymmetric collision betweatationary dark soliton (with, = 0) at a trap center
and a pair of oscillating solitons (withy = —v3) in a cigar-shaped condensate confined in a trap of stre&ngth0.06. The
figure shows the evolution of the density as obtained by titamerical integration of Eq[]2). Additionally, the figushows
the trajectory of one of the solitary waves as computed \@atjuation of motion that makes use of the effective poteoitiag.
(@I32) (solid green line) [the other moving dark soliton is thigror image of the one shown around= 0, while the third is, by
symmetry, constrained to stay preciselyat 0]. Itis clear that the agreement between Ed|. (2) and the extparticle picture
is excellent.

We complete the analysis of this section by studying the c&skark solitons performing small oscillations around thei
equilibrium positions. In fact, we are going to use the Lagian approach devised above to connect the oscillatiauéecy
obtained by the multi-soliton dynamics to the eigenfreaquesof the anomalous modes of the stationary soliton stiagtsvill
be obtained by a BdG analysis in the next section. In thaesjt is relevant to consider the simplest case of two weflarated
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FIG. 3: (Color online) A configuration of three dark solitpngith the central one being stationary and the other twollasicig with a
frequencyw,s. = 0.904€2. Shown are a contour plot depicting the evolution of the iigraecording to Eq.[(2) illustrating the path of the
density minimum of one of the oscillating solitons, as wellthe respective trajectory calculated by the equation dfan@mploying the
effective potential of Eq.[{17) (solid line). The parametatues areN = 2000, w. = 27 x 53 Hz,w, = 2w x = 890 Hz (i.e.,Q ~ 0.06)
and initial displacement from the trap cenéep = 2um.

solitons, which are assumed to be almost black (Be.= B2 = 1). In such a case, the Lagrangian takes the form,
1 L.y 15 5 15 5 o

L=—#%+_-%%— w2 Wose?y — .
! 2 b2 > sinh®(ymo(z2 — 21))

2 2 2 osc
Then, using the Euler-Lagrange equations, and replacm@yperbolic functiosinh by its exponential asymptote in the case
under consideration, i.e., f¢ry — 21| >> 0, the following equations of motion are obtained

(19)

. 3/2 _92 1/2 _ 2
2 = —8ny/ e Mo (22 Zl)—wosczl (20)

1/2
8n(3)/26—2n0 (z2—2z1) _ , 2

zo = WoseR2-

The fixed pointsZ;, Z» of the above system can be easily found by setting the leftisade equal to zero. The result is:
L 1 32n3
2= m=—t= g () &

wherew(n) is the Lambert’s w function defined as the inversg@b) = we™. Then, considering small deviationg (72) from
the equilibrium positionsZ;, Z>, we can Taylor expand the interaction potential keeping tm lowest-order term and, this
way, derive the following linearized equations of motion:

ﬁl = 16”36_4\/%Z (772 - 771) - wgscnla (22)
ily = — 16nge” V™% (ny — 1) — w2, 1.

Let us now consider the normal modes of the system and seetiosd of the formy; = n;0e™?,i = 1,2, wherew is the
common oscillation frequency of both dark solitons. Therssituting this ansatz into Eq$._{23), we rewrite the eignatof
motion as matrix eigenvalue equation, namely:
2 —w? - 16n36_4mz 16n(2)e_4\/"_02
—wn= n.

osc
16n3e=4vmoZ —w? . — 16nge~ VM2

To this end, it is possible to obtain from the above systenchiagacteristic frequeney; = w,s., which corresponds to in-phase
oscillations of the two dark solitons, as well as the frequyan,, which corresponds to out-of-phase oscillations of the two
solitons. The latter is given by:

wa = \Juwk,, + 32nZe VA2, 23)

The above procedure can also be applied to the case of thmeestablack, solitons®; ~ 1,7 = 1,2, 3) considering only
nearest-neighbour interactions. In this case, the eqiuilibpositions are given by the following expressions

- 1 16n2
Zo=0,7 ="J3=—71 = 0 24
=02 =2y =2 = o= (2, (24



while the three characteristic frequencies which corradpo the three normal modes of the system are the following,
W1 = Wosc (25)
ot Tonge

w2

w3 = \/wgsc + 487136_2\/%2.
In the following section, we will elaborate on the investiga of the stability of the multiple soliton states and thegidation of
their anomalous modes.

IV. STABILITY OF STATIONARY MULTI-SOLITON STATES

Having examined the location of the solitary waves and tbedillation eigenmodes and eigenfrequencies in an analyti
form, we now turn to the numerical investigation of suchistary multi-soliton states, and to their correspondingBspec-
trum. We carry out the relevant computations first for the-tlaok-soliton state and subsequently for the three-dalikes
state.

A. The two-dark-soliton state

We start by considering the simplest possible stationarlji+soliton state, namely the second-order nonlinear mafdeg.

@). In the linear limit of N — 0, this state corresponds to the second-excited state ofutetigm harmonic oscillator. The
excitation spectrum of this state contains a zero eigepv@lorresponding to the Goldstone mode), two double eiggnfncies
located af? and2(2, as well as infinitely many simple eigenfrequencies. Beloswvill analyze the excitation spectrum in the
nonlinear regime (i.e., when the number of atoMss increased) focusing, in particular, on the two doublepiglue pairs
mentioned above. Naotice that in our numerical results (sé@\) we fixw, to the typical valuev, = 27 x 400 Hz.

First, we consider the two eigenfrequencies located €br N = 0) which, in the nonlinear regime, obtain opposite Krein
signature. In particular, one of them has positive Kreimatgre and corresponds to tgole modd6, |7], while the second
one has negative Krein signature, i.e., the integral of tirennx energy product/ (Ju|* — |v|*)wdz (in our units), is negative.

In other words, in the nonlinear regime this eigenvalue bezpthe eigenfrequency; of one of the two anomalous modes of
the system (recall that the number of anomalous modes inxttieagon spectrum is the same as the number of dark solitons
or nodes in the relevant waveform). Notice that both eigemiencies originating fro? in the linear limit [see dashed (solid)
lines for the one with positive (negative) Krein signaturetie top panel of Figl]4] are real for every value of the nundfer
atomsN, indicating the absence of any instability. In fact, theadw mode, per the relevant symmetryl[5, 7], remains fixed at
w = , while the anomalous mode’s frequency in line with the dejesice of the single dark soliton mode anomalous mode
frequencyl|[31].

Next, we consider the eigenvalue pair locate@@Qt(for N = 0). Similarly to the previous case, these eigenfrequencies
obtain opposite Krein signature: one eigenvalue has pedtrein signature and corresponds to the background ceatkls
guadrupole mod¢6, |7], while the second one has negative Krein signatures tieing the eigenfrequency of the second
anomalous mode of the system. An important difference frioenpgrevious case is that this second pair of double eigenfre-
qguencies does become complex — see bottom panel of(fFig. 4ewie imaginary part of these eigenfrequencies is shown
as a function ofV. This implies that the respective nonlinear stationartesitmunstable for sufficiently small atom numbers.
Nevertheless, the instability occurs only near the lin@aitl(as was also predicted in Ref._[42]). However, as seethén
bottom panel of Fi§l4, when the number of atoms exceeds aalritalue, namelyW = 438 for a trap strength) = 0.1, all the
eigenfrequencies become real and the nonlinear state lesdorearly stable.

We have generally found that the larger the number of atontsttee stronger the anisotropy of the harmonic trap, the more
stable the configuration with the two stationary dark sobtts. For example, fd? = 0.35 this state is unstable up to the number
of atomsN = 1067, while forQ2 = 0.1 the instability occurs for very small condensates, with bamof atomsV < 500. Notice
that a similar behavior was also found in the framework oftBeGP equation considered in Ref. [42] (results not showeher
Additionally, regarding the connection of our analysishwéixperimental observations, we note that within the patanmange
of relevance to the recent experiment|ofi[18], we found the-tlark soliton state to be linearly stable.

Let us now return to the excitation spectrum of Fif. 4 and $omui the eigenfrequencies possessing negative Krein signat
(see solid lines in the top panel of Fig. 4), namely the twaaalous modes. In the case of two dark solitons under coradidar
the physical significance of these two anomalous modes hasdiscussed in Refl_[B5]. More specifically, excitation huf t
anomalous mode with the smallest eigenfrequengy,gives rise to arin-phaseoscillation, i.e., the two dark solitons move
towards the same direction without changing their relaspatial separation. On the other hand, excitation of thenahaus
mode with the largest eigenfrequengy, gives rise to amut-of-phasescillation, i.e., the two dark solitons move in opposite
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FIG. 4: (Color online) Top panel: the real part of the lowest eigenfrequencies of the second nonlinear rasdefunction of the number
of atomsN (for a harmonic trap witlf2 = 0.1). Eigenfrequencies possessing negative Krein signatareely eigenfrequencies of the two
anomalous modes, are depicted by solid lines. Eigenfrexg®ipossessing positive Krein signature are depicted blyedhlines, with the
lowest ones starting from,. = 0.1 andw, = 0.2 at N = 0 corresponding, respectively, to the dipole and quadrupmdes. Bottom panel:
the imaginary parw; of the eigenfrequency pair starting fram = 0.2 at N = 0 as a function of the number of atom& The vertical dotted
line at the critical valueV = 438 indicates the splitting of the complex pair into real eigegfiencies.

directions with the same velocity and undergo a head-oims@mil. It should be pointed out that in the context of the gsial
of the previous section, this information is also encomedsgithin the eigenvectorsg, of the small perturbations around the
stationary multi-soliton state. In particular, the two gibdities correspond, respectively, #gg = 710 andnsg = —n10.

The correspondence of the anomalous modes with the norm@ésnaf the two-dark soliton state is confirmed by direct
numerical simulations. In particular, we have numericatiegrated Eq. [[2) with initial condition the nonlinear t&iaary
mode excited by the corresponding anomalous modesyie;+ = 0) = ¢¥pg(z) + u(zr) + v*(z). The results (for parameter
valuesQ) = 0.1 and N ~ 1000) are shown in panels (a), (b) of Fif] 5. In Figl 5(a) (Fid. 5(he excitation of the first
(second) anomalous mode results in an in-phase (out-afeploacillatory motion of the two dark solitons, with the eristic
eigenfrequency of the first (second) anomalous modeu;e= 0.0784 (w2 = 0.199). Calculating numerically the maximum
density of the stationary state and the equilibrium posgtiof the dark solitons, we find that = 0.623 andZ = 1.78 £ 0.1.
This allows us to make a comparison with the ones calculated/ically based on the theoretical approach of the previo
section. Using Eq.[{21), witlv,s. = w1, and Eq. [2B) we find thaf = 1.85 andw, = 0.205, which differ only3% from the
corresponding numerically obtained values.

Finally, it is worth investigating the manifestation of timstability predicted above for small condensates, duédbkision”
of the second anomalous mode with the quadrupole mode. IM5{@), we show the evolution of the density of a condensate
with N ~ 400 confined in a trap with strength = 0.1 (as before). For these parameter values, the eigenfreigsafdhe two
anomalous modes atg = 0.081 andw, = 0.188 + 0.0025:. The numerical integration of Egl1(2) reveals that althotigh
initial evolution of the density roughly follows the one @pged in Fig[b(b) (up t@ =~ 700), the instability eventually manifests
itself: the soliton motion excites the quadrupole mode efdfistem, and this excitation results in a breathing behafithe
BEC (see the bottom panel of F[g. 5).

B. The three-dark-soliton state

Let us now consider the third-order nonlinear mode of Hd.. (2)the linear limit, the excitation spectrum of this state
consists of a zero eigenvalue, three double eigenfreqeefmtated af2, 22, and3(2, as well as infinitely many simple ones.
In the nonlinear regime, and similarly to the previous caseh of the the three aforementioned pairs obtain opposéa K
signature. In FigJ6 we show the real (top panel) and imagi(izottom panel) parts of the lowest eigenfrequencies asctifun
of the number of atom#/ (for a trap strengtlf = 0.1 as before). In the top panel, the eigenfrequencies deplstethshed
(solid) lines correspond to ones with with positive (negatKrein signature. Regarding the ones with positive Keggmature,
we note that the lowest ones, starting fram = 0.1 and0.2 for N = 0, correspond to the dipole and quadrupole modes,
respectively. As before, the system’s ability to sustaotiir oscillations for allvV with a frequency? preserves the dipolar
frequency at, = 0.1 throughout the relevant figure and precludes the possibilid quartet-inducing collision with the lowest
in-phase-oscillation anomalous mode of the system.

We now focus on the two upper double pairs (and their anorsatoades), located &0 and3(2 in the linear limit. These
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FIG. 5: (Color online) Spatio-temporal evolution of the densate density after the excitation of the two anomaloudesioPanels (a),(b)
show the in-phase and out-of-phase oscillatory motion efttvo dark solitons (fof2 = 0.1 and N = 1000); the oscillation frequencies are
identical to the eigenfrequencies of the first and secondnalmus modes, respectively. Panel (c) shows the manif@stat the dynamical
instability (for 2 = 0.1 and N = 400) due to the collision of the second anomalous mode with treliqipole mode: the motion of the
solitons excites the quadrupole mode of the system, ragiiliia breathing behavior of the condensate.
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FIG. 6: (Color online) Top panel: The real part of the lowdgeafrequencies of the third excited mode (i.e., threddatiton state) as a
function of the number of atom¥ (for a harmonic trap witlf2 = 0.1). The notation follows the one used in Fig. 4. The bold ciialthe top
panel indicates the collision of eigenfrequencies of ofipd&rein signatures which does not lead to instability (detils in the text). Bottom
panel: The imaginary parts of the the eigenfrequency p#arsisg fromw, = 0.2 (blue) andw, = 0.3 (green) atN = 0 as a function of the
number of atomsV. The vertical dotted lines indicate the splitting of thepastive complex pairs into real ones. After the secondtspmit
all the eigenfrequencies become real and the three-sdlitia is stabilized.

become complex in the nonlinear regime. As is observed in@ithe upper pair (starting fros12 for N = 0) splits into real
eigenfrequencies at very small values of the number of atmwhile the lower pair (starting fror8Q2 at N = 0) remains
complex for larger values a¥. For the assumed trap strength= 0.1, the complex eigenfrequencies become real beyond the
critical value of N ~ 880 and, thus, the nonlinear mode becomes dynamically stabdee,Ht is worth mentioning that this
state remains stable for the values/éf> 880 considered herein, although &t ~ 1395 another collision appears: indeed,
at a point marked by a circle in the top panel of Fid. 6, the ®ligguencies starting froma, = 0.3 and0.4 for N = 0,
which possess opposite Krein signature, cross each othererttheless, this collision does not lead to instabilitgduese the
eigenmodes associated with these eigenfrequencies remhogonal at the collision point. This happens due to thgogjie
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FIG. 7: (Color online) The maximum of the imaginary part oé thigenfrequencies of the third excited state for a fixed rarnolh atoms
(V= 1000) as a function of the trap strength The insets show the spectral plane for a stafille<(0.05) and an unstablegX = 0.18) case.
In the latter case, the complex eigenfrequencies origiinaie the collision of the second anomalous mode with the quzale mode.

parity of the colliding eigenmodes [42].

So far, to investigate the stability of the three-dark solistate (as well as the two-soliton state considered in téequs
section) we kept the trap strengbfixed and varied the number of atoms It is also worthwhile (and experimentally relevant)
to reverse the procedure, i.e., to keep the number of atored,fa¢ N = 1000, and vary the harmonic trap strendth as
shown in Fig.[¥. In this figure, it is readily observed that ttomlinear state remains stable up to the critical vélue 0.12.
Beyond this value, the eigenfrequency of the second anamaimde collides with that of the quadrupole mode and becomes
complex. Typical examples of the spectral plane, for bodblst and unstable cases, are shown in the insets of_Fig. 7. For
the stable case d@ = 0.05, the eigenfrequencies of the anomalous modes are found dg be 0.039, w, = 0.0988, and
w3 = 0.1626, while for the unstable case 6f = 0.18 the respective values atg = 0.1489 andwsy = 0.5994; notice that there
exist also two complex eigenfrequenciessat= 0.3379 £+ 0.014, stemming from the above mentioned collision. Once again,
we calculate numerically the maximum density of the state= 0.3817, and the equilibrium positions of the dark solitons:
Zy = 0,73 = —Zy = 4.3£0.1. Using Eq. [2#), withv,,. = w;, we find thatZ = 4.54, in good agreement with the numerically
obtained, while the remaining two normal mode frequenciesrgby Eq. [26) are found to he, = 0.1, w3 = 0.1647 and differ
by less thar2% from the ones obtained by the BdG analysis.

Similarly to the two-soliton state, we now present resuftdicect numerical integration of EqJ(2) with an initial cdition
given by the third nonlinear mode excited by the correspagpenomalous modes. First we study the stable case{with).05
and N = 1000, and then the unstable case, with= 0.18 and N = 1000. In the stable case, when the first anomalous mode
is excited, the three dark solitons perform an in-phasdlagon with the characteristic eigenfrequency of the esponding
anomalous mode — see FId. 8(a). The excitation of the seaomm@ous mode results in the following configuration: the tw
outer solitons are moving in opposite directions (symraatly around: = 0), while the center soliton is a stationary one — see
Fig.[B(b). As mentioned in the previous section, this corfigion may be experimentally observed following the experital
procedure ofl[18], i.e., by merging two condensates ihjtiptepared in a double-well trap, withaphase difference between
them. On the other hand, when the third anomalous mode iteeix¢he two outer solitons are oscillating in-phase whike t
center soliton is oscillating out-of-phase with respedhi outer ones — see Figl. 8(c)). Finally, in the unstable,caseise as
an initial condition the third nonlinear state excited bg thode associated with the complex eigenfrequencies. Asisddg.
[8(d), initially the outer dark solitons are moving out-dfgse, following the configuration observed in Higy. 8(b). &léveless,
similarly to the two-dark soliton state, the motion of thditems gradually excites the quadrupole mode of the systesulting
in a breathing behaviour of the condensate, signalling theifastation of the relevant dynamical instability. Clgain such a
case, the oscillation amplitude of the dark solitons is moistant anymore.

V. EXPERIMENTAL CREATION OF MULTIPLE ATOMIC DARK SOLITONS

Dark solitons can be created experimentally, e.g., by ththogeof matter-wave interference, which can be considesed a
a form of density engineering. This method makes use of tbetlf@t an interference pattern in the presence of interiatom
interactions generates a train of dark solitans [46]. Oyreeixnental realization of density engineering involves BECs,
initially prepared in a double-well potential. This doubiell potential is created by the superposition of a crosgeital
dipole trap and a one-dimensional optical lattice [47]. Reimg the optical lattice leads to the merger of the two atlii
separated BECs in the harmonic trap and to the subsequatiberef an interference pattern which generates the salitbhe
experimental procedure is describedlin [18]. Two osciligtand colliding solitons were observed in that experimémtthe
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FIG. 8: (Color online) Spatio-temporal evolution of the densate density after the excitation of the three anomatmaes. In panels (a)-(c)
stable configurations witf2 = 0.05, N = 1000 are shown: in (a) excitation of the first anomalous mode tesula configuration where the
three dark solitons move together in-phase; in (b) exoitatif the second anomalous mode results in a configurationevthe outer solitons
move in opposite directions (each being the mirror imagenefdther around = 0) while the middle one is at rest; in (c) excitation of the
third anomalous mode results in a configuration where th&ecaoliton is moving in opposite direction to the outer deokitons. Panel (d)
shows the excitation of the mode associated with a complgenéiequency for the unstable case with= 0.18 and N = 1000. Here, a
dynamical instability manifests itself due to the collisiof the second anomalous mode with the quadrupole mode: otiermof the dark
solitons excites the quadrupole mode of the system, ragiiliia breathing behaviour of the entire condensate.
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FIG. 9: Increasing the distance between the created sslitan be realized by increasing the ramping-down time of phieal latticeror., as
shown by numerical simulations of EQl (2): &) = Oms, b) 7oL = 2ms, ¢) Tor = 4ms

following we will extend this scheme to the preparation ofreke and of multiple dark solitons in a harmonic trap.

A. Controlling the created macroscopically excited state

The fringe spacing of a matter-wave interference pattepedds on the momentum of the two merging atom clouds. There-
fore, it is possible to vary the number of created solitonthia process by controlling the relative velocity. An inase of the
relative velocity between the atom clouds lowers the distdretween the created solitons and leads to the creatialdibfcanal
solitons further away from the trap center. This can bezedlby changing the ramping-down time of the optical lattisg, as
shown in Fig[®. The number and distance of created solitanstso be controlled by the aspect ratio of the tvapo; or by
lowering the number of atoms. As thermal fluctuations of tiigsil phase directly translate into position fluctuatiafishe dark
soliton train, care has to be taken to keep this phase asafjubssible. Since the phase fluctuations scab@bas kgT/E;
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(with E; being the tunneling coupling energy of a double-well sygtentareful control of the potential height, i.B;, allows
to stabilize the phase and thus leads to negligible positimiuations. This also limits the achievable soliton dises. In our
experiment we can realizeb ~ 0.06/(27).

The successful experimental realization of four solitolus pwo additional weak ones with extremely high oscillatampli-
tude is shown in Figi_10(a). The illustrated oscillation dgmics, recorded with a time resolution s, includes the creation
process of the solitons starting at the initial double wellgmtial and including the ramping down of the optical tati The
creation process ends at the dashed line, where the fina walihne longitudinal trapping frequency is reached aftewitable
ramping down from the value necessary to obtain the doubllgpatential.

0 10 20 30 40 50 60
t[ms]

FIG. 10: a) Observation of the oscillation of four dark smti$ including the creation process. The evolution is awstayer 10 experimental
runs. The point in time where the creation process of thémsdiis finished is marked by the dashed line. b) Experimehtsgrvation of three
dark solitons in a harmonic trap averaged over 16 runs. Témgtion process of the solitons is not shown in this case. dliters in the center

of the trap is at rest (black soliton) whereas the two outesmscillate. The time evolution plots were obtained bygragng the images over
their transverse axis, meaning that each vertical line sttbe longitudinal density of the BEC at a certain point ineim

A matter-wave interference pattern depends on the relphiase differencé ¢ of the two merging atom clouds. ¢ = 0
a symmetric pattern with an even number of solitons is predu@ small phase difference leads to an asymmetric evalutio
pattern of the created solitons, while a phase differenzgedor leads to the creation of an additional soliton between therot
ones meaning that an odd number of solitons is produced. Bwde difference can be created by changing the symmetng of t
potential, which results in an energy difference betweendtels of the two wells of the double-well potential. Maiiming this
asymmetry for a certain hold time accumulates a phase difter between the two BECs. In a simple approximation, thegha
difference is given b\¢ ~ AFE/h - t. By adapting the asymmetry and the time of phase accumnlbé&ore releasing the two
condensates from the double well, arbitrary phase dift@eican be achieved. Especially interesting is the casethergitial
phase difference is exactly Then, a black (stationary) soliton is created at the cenftdre trap, between the oscillating ones.
Shifting the symmetry of the potential experimentally ialized by shifting the second beam of the dipole trap witipeesto
the optical lattice.

Fig.[Z0(b) shows the experimental realization of three datitons in a harmonic trap created by the above discussétbahe
The trap frequencies used in the experimentare 36.1 + 0.25Hz (longitudinal frequency)y, = 407.5 £ 40.8Hz (transverse



15

frequency). The mean number of atoms in the BEQis= 1570 + 146. In this measurement the height of the optical lattice
is ramped down linearly on a timescale®f;, = 2ms. The final value of the longitudinal trapping frequencyis reached
after ramping down withirfms from the value of"#*i%! = 63Hz necessary for obtaining the double well potential [44].He t
performed experiment the oscillation amplitude of the twbeo solitons,A,s. = (21 & 0.6)¢&, is relatively large. Therefore,
the oscillation frequency is only moderately increasedhgydoliton-soliton interaction in this case;/v, = 0.775 4+ 0.006. A
numerical simulation yields; /v, = 0.761 in good agreement with the experimental result.

Our method should offer the possibility of creating a singationary soliton, corresponding to the first excitedesta
a harmonic trapl[45]. Numerical simulations reveal thas ttén be achieved by increasing the ramping-down time of the
optical latticero, further, which decreases the kinetic energy of the coligoocess. In the lowest collisional state only one
interference fringe is produced which produces a singl& daliton. However, for technical reasons|[49], the singt®Ying)
dark solitons that we created by this method (see[Fiy. 11¢ Wectuating in position from shot to shot.

The above results illustrate the possibility of experinadiptgenerating not only a single pair of dark solitons aslifi][ but
rather of an essentially arbitrary number of such solitons.
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FIG. 11: (Color online) Single shots of the longitudinal digy of the BEC. Increasing the ramping-down time of therisigy of the optical
lattice from7or, = 2 mstoror, = 5 ms offers the possibility of creating a single soliton. Lgdinel: single shot of the three soliton state
shown in Fig[ID. Note that the stationary soliton in the rfédgppears with finite density on its minimum in the experitakimages. This is
due to the limited optical resolution. Right panel: sindletsof a single dark soliton state.

VI. CONCLUSIONS

In the present work, we attempted to quantify the existestahility and dynamics of multiple atomic dark solitons, by
examining in detail the prototypical cases of two- and tkatagk soliton states. We provided two complemetary view{soi
corroborating the same basic picture. A first approach watsathconsidering the solitons as particles, which intevattt each
other through an exponential tail-tail interaction and@efined within a parabolic trap (appropriately incorpomgthe effect
of dimensionality). This particle picture provided us wéltdetailed understanding of the repulsive nature of the-sukton
interaction and its implication on collision-phenomend an how it can be combined with the restoring force of the Ipalia
confinementto provide for effective stationary states efdjrstem (i.e., of the dark soliton “crystal”). Within thentext of these
equations of motion the normal modes of this crystal were al@mined and were associated with relative motions betwee
the solitary waves. The second viewpoint came from the denation an effective quasi-one-dimensional partialedéhtial
equation (which incorporates appropriately the trangvemnfinement of the cloud) and starting from the linear liafithe
number of atomsV — 0 which has the well-known quantum harmonic oscillator efgaations and developing the multi-dark-
soliton states as natural continuations of appropriateofs@ or third- or higher-) excited modes of the linear peobl In that
context, the excitation spectrum contained the modes ob#uground BEC (omitted from the particle picture), as vasl|
the anomalous modes pertaining to the dark-soliton quasietes, which were, in turn, associated with the abovetioead
normal modes. These two approaches together with a detailédrstanding of the experimental setuplof [18] provide key
insights on what types of modes can be excited in the expatiméat intrinsic frequencies should be associated wigmth
and, furthermore, what types of instabilities/resonandg#s background excitations, these modes can be expectaduce.

One of the future directions of the present program wouldobgeneralize this picture to the extent possible to the k-dar
soliton lattice, formulating and addressing questionsualtite characterization of the normal modes of such a “dalikes-
crystal”, as well as questions about the conditions undécinhis crystal could potentially undergo phase transgigossibly
to a state such as a “dark-soliton-gas”. On the other hamdhannatural generalization of the present program woeldhbt of
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considering a quasi-two-dimensional analog of the wave$pthe corresponding stability and dynamics, namely thetudti-
vortex structures and the associated particle picturali&along these directions are presently in progress dhdevieported
in future publications.
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